IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v23y2005i5p1865-1877.html
   My bibliography  Save this article

Controlling Hopf bifurcations of discrete-time systems in resonance

Author

Listed:
  • Wen, Guilin
  • Xu, Daolin
  • Xie, Jianhua

Abstract

Resonance in Hopf bifurcation causes complicated bifurcation behaviors. To design with certain desired Hopf bifurcation characteristics in the resonance cases of discrete-time systems, a feedback control method is developed. The controller is designed with the aid of discrete-time washout filters. The control law is constructed according to the criticality and stability conditions of Hopf bifurcations as well as resonance constraints. The control gains associated with linear control terms insure the creation of a Hopf bifurcation in resonance cases and the control gains associated with nonlinear control terms determine the type and stability of bifurcated solutions. To derive the former, we propose the implicit criteria of eigenvalue assignment and transversality condition for creating the bifurcation in a desired parameter location. To derive the latter, the technique of the center manifold reduction, Iooss’s Hopf bifurcation theory and Wan’s Hopf bifurcation theory for resonance cases are employed. In numerical experiments, we show the Hopf circles and fixed points from the created Hopf bifurcations in the strong and weak resonance cases for a four-dimensional control system.

Suggested Citation

  • Wen, Guilin & Xu, Daolin & Xie, Jianhua, 2005. "Controlling Hopf bifurcations of discrete-time systems in resonance," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1865-1877.
  • Handle: RePEc:eee:chsofr:v:23:y:2005:i:5:p:1865-1877
    DOI: 10.1016/j.chaos.2004.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077904004515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2004.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guanrong Chen & Jin-quing Fang & Yiguang Hong & Huashu Qin, 2000. "Controlling hopf bifurcations: Discrete-time systems," Discrete Dynamics in Nature and Society, Hindawi, vol. 5, pages 1-5, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yan & Liu, Suhua & Tang, Jiashi & Meng, Yimin, 2009. "Amplitude control of limit cycles in Langford system," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 335-340.
    2. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Bifurcation control of the Hodgkin–Huxley equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 217-224.
    3. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Analysis and control of the bifurcation of Hodgkin–Huxley model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 247-256.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Y.D. & Zhang, W. & Zhang, Y.F. & Bi, Q.S., 2024. "Bursting oscillations in coupling Mathieu-van der Pol oscillator under parametric excitation," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Wang, Jiang & Chen, Liangquan & Fei, Xianyang, 2007. "Analysis and control of the bifurcation of Hodgkin–Huxley model," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 247-256.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:23:y:2005:i:5:p:1865-1877. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.