IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v41y2009i5p2838-2841.html
   My bibliography  Save this article

Reasons why the current CERN experiment should discover at least one new spin zero elementary particle and probably several others

Author

Listed:
  • El Naschie, M.S.

Abstract

Within a general theory, various scenarios are discussed to answer the burning question of if and how many new elementary particles will the new CERN super hadron collider discover. The answer with a very high probability is that at least one spin zero particle will be discovered. In addition there is a reasonable possibility that up to five Higgs particles will be found.

Suggested Citation

  • El Naschie, M.S., 2009. "Reasons why the current CERN experiment should discover at least one new spin zero elementary particle and probably several others," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2838-2841.
  • Handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2838-2841
    DOI: 10.1016/j.chaos.2008.10.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077908004931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2008.10.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naschie, M.S. El, 2008. "The standard model physical degrees of freedom interpretation of the electromagnetic fine structure coupling α¯o≃1/137," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 609-611.
    2. Munroe, Ray, 2009. "Symplectic tiling, hypercolour and hyperflavor E12," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2135-2138.
    3. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2009. "On zero-dimensional points curvature in the dynamics of Cantorian-fractal spacetime setting and high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2725-2732.
    2. El Naschie, M.S., 2009. "The theory of Cantorian spacetime and high energy particle physics (an informal review)," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2635-2646.
    3. Elmali, Ceren Sultan & Uğur, Tamer, 2009. "Fan-Gottesman compactification of some specific spaces is Wallman-type compactification," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 17-19.
    4. Elokaby, Ayman, 2009. "Knot wormholes and the dimensional invariant of exceptional Lie groups and Stein space hierarchies," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1616-1618.
    5. Halayka, S., 2009. "Some visually interesting non-standard quaternion fractal sets," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2842-2846.
    6. El Naschie, M.S., 2008. "Towards a quantum field theory without Gribov copies and similar problems," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 936-938.
    7. El Naschie, M.S., 2009. "On the Witten–Duff five Branes model together with knots theory and E8E8 super strings in a single fractal spacetime theory," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 2018-2021.
    8. El Naschie, M.S., 2009. "Knots and exceptional Lie groups as building blocks of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1799-1803.
    9. El Naschie, M.S., 2008. "Anomalies free E-infinity from von Neumann’s continuous geometry," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1318-1322.
    10. El Naschie, M.S., 2008. "An energy balance Eigenvalue equation for determining super strings dimensional hierarchy and coupling constants," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1283-1285.
    11. El Naschie, M.S., 2008. "Fuzzy multi-instanton knots in the fabric of space–time and Dirac’s vacuum fluctuation," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1260-1268.
    12. El Naschie, M.S., 2009. "Derivation of the Euler characteristic and the curvature of Cantorian-fractal spacetime using Nash Euclidean embedding and the universal Menger sponge," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2394-2398.
    13. El Naschie, M.S., 2009. "Kac–Moody exceptional E12 from simplictic tiling," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1569-1571.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:41:y:2009:i:5:p:2838-2841. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.