IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v26y2005i5p1271-1276.html
   My bibliography  Save this article

On the generalized Lorenz canonical form

Author

Listed:
  • Čelikovský, Sergej
  • Chen, Guanrong

Abstract

This short note is to briefly introduce the new notion of generalized Lorenz canonical form (GLCF), which contains the classical Lorenz system and the newly discovered Chen system as two extreme cases, along with infinitely many chaotic systems in between. It also points out that some recently reported chaotic systems are special cases of the GLCF.

Suggested Citation

  • Čelikovský, Sergej & Chen, Guanrong, 2005. "On the generalized Lorenz canonical form," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1271-1276.
  • Handle: RePEc:eee:chsofr:v:26:y:2005:i:5:p:1271-1276
    DOI: 10.1016/j.chaos.2005.02.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905001931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.02.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Fengyun & Zhao, Yi & Zhou, Tianshou, 2007. "Identify fully uncertain parameters and design controllers based on synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 34(5), pages 1677-1682.
    2. Wang, Xia, 2009. "Si’lnikov chaos and Hopf bifurcation analysis of Rucklidge system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2208-2217.
    3. Liao, Xiaoxin & Xu, F. & Wang, P. & Yu, Pei, 2009. "Chaos control and synchronization for a special generalized Lorenz canonical system – The SM system," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2491-2508.
    4. Huang, Kuifei & Yang, Qigui, 2009. "Stability and Hopf bifurcation analysis of a new system," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 567-578.
    5. Wang, Jiezhi & Chen, Zengqiang & Yuan, Zhuzhi, 2009. "Existence of a new three-dimensional chaotic attractor," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3053-3057.
    6. Gao, Tiegang & Chen, Zengqiang & Gu, Qiaolun & Yuan, Zhuzhi, 2008. "A new hyper-chaos generated from generalized Lorenz system via nonlinear feedback," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 390-397.
    7. Zhou, Xiaobing & Wu, Yue & Li, Yi & Wei, Zhengxi, 2008. "Hopf bifurcation analysis of the Liu system," Chaos, Solitons & Fractals, Elsevier, vol. 36(5), pages 1385-1391.
    8. Wang, Junwei & Zhao, Meichun & Zhang, Yanbin & Xiong, Xiaohua, 2007. "S˘i’lnikov-type orbits of Lorenz-family systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 438-446.
    9. Jiang, Yongxin & Sun, Jianhua, 2007. "Si’lnikov homoclinic orbits in a new chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 150-159.
    10. Xiong, Xiaohua & Wang, Junwei, 2009. "Conjugate Lorenz-type chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 923-929.
    11. Zhou, Liangqiang & Chen, Fangqi, 2009. "Hopf bifurcation and Si’lnikov chaos of Genesio system," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1413-1422.
    12. Yu, Simin & Tang, Wallace K.S., 2009. "Tetrapterous butterfly attractors in modified Lorenz systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1740-1749.
    13. Dong, Chengwei & Liu, Huihui & Jie, Qi & Li, Hantao, 2022. "Topological classification of periodic orbits in the generalized Lorenz-type system with diverse symbolic dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    14. Qi, Guoyuan & Chen, Guanrong & van Wyk, Michaël Antonie & van Wyk, Barend Jacobus & Zhang, Yuhui, 2008. "A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 705-721.
    15. Zhiqin Qiao & Xianyi Li, 2014. "Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 20(3), pages 264-283, May.
    16. Qi, Guoyuan & Chen, Guanrong & Zhang, Yuhui, 2008. "On a new asymmetric chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 37(2), pages 409-423.
    17. Chen, Zengqiang & Yang, Yong & Yuan, Zhuzhi, 2008. "A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1187-1196.
    18. Doungmo Goufo, Emile Franc, 2017. "Solvability of chaotic fractional systems with 3D four-scroll attractors," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 443-451.
    19. Li, Damei & Wu, Xiaoqun & Lu, Jun-an, 2009. "Estimating the ultimate bound and positively invariant set for the hyperchaotic Lorenz–Haken system," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1290-1296.
    20. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    21. Qi, Guoyuan & van Wyk, Barend Jacobus & van Wyk, Michaël Antonie, 2009. "A four-wing attractor and its analysis," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2016-2030.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:26:y:2005:i:5:p:1271-1276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.