IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v38y2008i1p238-253.html
   My bibliography  Save this article

Integrable vortex dynamics in anisotropic planar spin liquid model

Author

Listed:
  • Gurkan, Zeynep Nilhan
  • Pashaev, Oktay

Abstract

The problem of magnetic vortex dynamics in an anisotropic spin liquid model is considered. For incompressible flow the model admits reduction to saturating Bogomolny inequality analytic projections of spin variables, subject the linear holomorphic Schrödinger equation. It allows us to construct N vortex configurations in terms of the complex Hermite polynomials. Using complex Galilean boost transformations, the interaction of the vortices and the vortex chain lattices (vortex crystals) is studied. By the complexified Cole–Hopf transformation, integrable N vortex dynamics is described by the holomorphic Burgers equation. Mapping of the point vortex problem to N-particle problem, the complexified Calogero–Moser system, showing its integrability and the Hamiltonian structure, is given.

Suggested Citation

  • Gurkan, Zeynep Nilhan & Pashaev, Oktay, 2008. "Integrable vortex dynamics in anisotropic planar spin liquid model," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 238-253.
  • Handle: RePEc:eee:chsofr:v:38:y:2008:i:1:p:238-253
    DOI: 10.1016/j.chaos.2006.11.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906010472
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.11.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Holographic dimensional reduction: Center manifold theorem and E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 29(4), pages 816-822.
    2. El Naschie, M. Saladin, 2006. "Nanotechnology for the developing world," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 769-773.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mursaleen, M. & Mohiuddine, S.A., 2009. "Nonlinear operators between intuitionistic fuzzy normed spaces and Fréchet derivative," Chaos, Solitons & Fractals, Elsevier, vol. 42(2), pages 1010-1015.
    2. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    3. Pardo-Guerra, Juan Pablo, 2011. "Mapping emergence across the Atlantic: Some (tentative) lessons on nanotechnology in Latin America," Technology in Society, Elsevier, vol. 33(1), pages 94-108.
    4. El Naschie, M.S., 2008. "Deriving the largest expected number of elementary particles in the standard model from the maximal compact subgroup H of the exceptional Lie group E7(-5)," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 956-961.
    5. El Naschie, M.S., 2007. "Determining the number of Fermions and the number of Boson separately in an extended standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1241-1243.
    6. El Naschie, M.S., 2007. "A derivation of the electromagnetic coupling α0≃137.036," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 521-526.
    7. Mursaleen, M. & Mohiuddine, S.A., 2009. "On stability of a cubic functional equation in intuitionistic fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2997-3005.
    8. Zhou, Jianfeng & Song, Deyao, 2009. "The properties of a class of biorthogonal vector-valued nonseparable bivariate wavelet packets," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2226-2233.
    9. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    10. Chen, Ning & Li, Zichuan & Jin, Yuanyuan, 2009. "Visual presentation of dynamic systems with hyperbolic planar symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 621-634.
    11. He, Ji-Huan & Liu, Yong & Xu, Lan & Yu, Jian-Yong, 2007. "Micro sphere with nanoporosity by electrospinning," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 1096-1100.
    12. Leila Tahmooresnejad & Catherine Beaudry, 2019. "Collaboration or funding: lessons from a study of nanotechnology patenting in Canada and the United States," The Journal of Technology Transfer, Springer, vol. 44(3), pages 741-777, June.
    13. Yilmaz, Yilmaz, 2009. "Fréchet differentiation of nonlinear operators between fuzzy normed spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 473-484.
    14. Marek-Crnjac, L., 2007. "The maximum number of elementary particles in a super symmetric extension of the standard model," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1631-1636.
    15. El Naschie, M.S., 2007. "The Fibonacci code behind super strings and P-Branes. An answer to M. Kaku’s fundamental question," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 537-547.
    16. He, Ji-Huan, 2008. "String theory in a scale dependent discontinuous space–time," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 542-545.
    17. He, Ji-Huan & Wan, Yu-Qin & Xu, Lan, 2007. "Nano-effects, quantum-like properties in electrospun nanofibers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 26-37.
    18. El Naschie, M.S., 2009. "On zero-dimensional points curvature in the dynamics of Cantorian-fractal spacetime setting and high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2725-2732.
    19. El Naschie, M. Saladin, 2006. "Advanced prerequisite for E-infinity theory," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 636-641.
    20. El-Okaby, Ayman A., 2008. "Exceptional Lie groups, E-infinity theory and Higgs Boson," Chaos, Solitons & Fractals, Elsevier, vol. 38(5), pages 1305-1317.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:38:y:2008:i:1:p:238-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.