IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v34y2007i2p509-518.html
   My bibliography  Save this article

Enhanced box and prism assisted algorithms for computing the correlation dimension

Author

Listed:
  • Bueno-Orovio, Alfonso
  • Pérez-García, Víctor M.

Abstract

Box-assisted and prism-assisted algorithms are among the most popular algorithms for the computation of the correlation dimension. However, the box size is usually determined by authors just through rough estimates or even by trial and error. In this paper, an explicit criterion for the selection of the optimal box size in box-assisted algorithms is presented. When used in conjunction with even the simplest box-assisted algorithm, the computation time needed to estimate the correlation integral is drastically reduced. These reductions range from a factor of 10 to factors larger than 1000, depending on the complexity of the attractor and/or the length of the dataset.

Suggested Citation

  • Bueno-Orovio, Alfonso & Pérez-García, Víctor M., 2007. "Enhanced box and prism assisted algorithms for computing the correlation dimension," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 509-518.
  • Handle: RePEc:eee:chsofr:v:34:y:2007:i:2:p:509-518
    DOI: 10.1016/j.chaos.2006.03.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906002645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.03.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    2. Pascolo, Paolo & Barazza, Fausto & Carniel, Roberto, 2006. "Considerations on the application of the chaos paradigm to describe the postural sway," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1339-1346.
    3. Silva, F.E. & Gonçalves, L.L. & Fereira, D.B.B. & Rebello, J.M.A., 2005. "Characterization of failure mechanism in composite materials through fractal analysis of acoustic emission signals," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 481-494.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Shuang & Wang, Xingyuan & Zhou, Wenjie & Zhang, Chuan, 2022. "Recognition of the scale-free interval for calculating the correlation dimension using machine learning from chaotic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kian-Ping Lim & Melvin J. Hinich & Venus Khim-Sen Liew, 2005. "Statistical Inadequacy of GARCH Models for Asian Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 4(3), pages 263-279, December.
    2. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    3. John T. Barkoulas & Christopher F. Baum & Joseph Onochie, 1997. "A nonparametric investigation of the 90‐day t‐bill rate," Review of Financial Economics, John Wiley & Sons, vol. 6(2), pages 187-198.
    4. Catherine Kyrtsou & Michel Terraza, 2003. "Is it Possible to Study Chaotic and ARCH Behaviour Jointly? Application of a Noisy Mackey–Glass Equation with Heteroskedastic Errors to the Paris Stock Exchange Returns Series," Computational Economics, Springer;Society for Computational Economics, vol. 21(3), pages 257-276, June.
    5. repec:zbw:bofrdp:1995_009 is not listed on IDEAS
    6. Philip Maymin, 2010. "The Hazards of Propping Up: Bubbles and Chaos," Papers 1002.2282, arXiv.org.
    7. Jialei Jiang & Eun-Mi Park & Seong-Taek Park, 2021. "The Impact of the COVID-19 on Economic Sustainability—A Case Study of Fluctuation in Stock Prices for China and South Korea," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    8. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    9. Rama Cont & Jean-Philippe Bouchaud, 1997. "Herd behavior and aggregate fluctuations in financial markets," Science & Finance (CFM) working paper archive 500028, Science & Finance, Capital Fund Management.
    10. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    11. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
    12. Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
    13. Bo Qian & Khaled Rasheed, 2010. "Foreign exchange market prediction with multiple classifiers," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 271-284.
    14. Ayan Bhattacharya & Rudra Sensarma, 2013. "Non-linearities in Emerging Financial Markets: Evidence from India," IIM Kozhikode Society & Management Review, , vol. 2(2), pages 165-175, July.
    15. Kim, Sei-wan & Lee, Kihoon & Nam, Kiseok, 2010. "The relationship between CO2 emissions and economic growth: The case of Korea with nonlinear evidence," Energy Policy, Elsevier, vol. 38(10), pages 5938-5946, October.
    16. Tim Bollerslev & Benjamin Hood & John Huss & Lasse Heje Pedersen, 2018. "Risk Everywhere: Modeling and Managing Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2729-2773.
    17. Verhoeven, Peter & McAleer, Michael, 2004. "Fat tails and asymmetry in financial volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 64(3), pages 351-361.
    18. Chen, Mei-Ping & Lin, Yu-Hui & Tseng, Chun-Yao & Chen, Wen-Yi, 2015. "Bubbles in health care: Evidence from the U.S., U.K., and German stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 193-205.
    19. David Chappel & Joanne Padmore & Julia Pidgeon, 1998. "A note on ERM membership and the efficiency of the London Stock Exchange," Applied Economics Letters, Taylor & Francis Journals, vol. 5(1), pages 19-23.
    20. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9.
    21. Vortelinos, Dimitrios I. & Thomakos, Dimitrios D., 2013. "Nonparametric realized volatility estimation in the international equity markets," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 34-45.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:34:y:2007:i:2:p:509-518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.