IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v33y2007i1p270-289.html
   My bibliography  Save this article

Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor

Author

Listed:
  • Ge, Zheng-Ming
  • Jhuang, Wei-Ren

Abstract

Chaos, its control and synchronization for a fractional order rotational mechanical system with a centrifugal governor are studied for both the autonomous and the nonautonomous cases. It is found that chaos exists in the fractional order systems with order less than and more than the number of states of the system. Controlling the chaotic motion of a fractional order system to its equilibrium point is obtained for both the autonomous and the nonautonomous cases. The rotational mechanical systems with the same fractional order and with the different fractional orders are synchronized by linear coupling for both the autonomous and the nonautonomous cases.

Suggested Citation

  • Ge, Zheng-Ming & Jhuang, Wei-Ren, 2007. "Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 270-289.
  • Handle: RePEc:eee:chsofr:v:33:y:2007:i:1:p:270-289
    DOI: 10.1016/j.chaos.2005.12.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906000336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.12.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Jun Guo, 2006. "Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal," Chaos, Solitons & Fractals, Elsevier, vol. 27(2), pages 519-525.
    2. Elabbasy, E.M. & Agiza, H.N. & El-Dessoky, M.M., 2005. "Global synchronization criterion and adaptive synchronization for new chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 23(4), pages 1299-1309.
    3. Yassen, M.T., 2005. "Controlling chaos and synchronization for new chaotic system using linear feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 913-920.
    4. Ge, Z.-M. & Cheng, J.-W., 2005. "Chaos synchronization and parameter identification of three time scales brushless DC motor system," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 597-616.
    5. Ge, Zheng-Ming & Lee, Ching-I, 2005. "Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1855-1864.
    6. Park, Ju H., 2005. "Chaos synchronization of a chaotic system via nonlinear control," Chaos, Solitons & Fractals, Elsevier, vol. 25(3), pages 579-584.
    7. Ge, Zheng-Ming & Chen, Yen-Sheng, 2005. "Adaptive synchronization of unidirectional and mutual coupled chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 881-888.
    8. Ahmad, Wajdi M., 2005. "Hyperchaos in fractional order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1459-1465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nazim I Mahmudov & Sameer Bawaneh & Areen Al-Khateeb, 2019. "On a Coupled System of Fractional Differential Equations with Four Point Integral Boundary Conditions," Mathematics, MDPI, vol. 7(3), pages 1-14, March.
    2. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    3. Surendar, R. & Muthtamilselvan, M. & Ahn, Kyubok, 2024. "Stochastic disturbance with finite-time chaos stabilization and synchronization for a fractional-order nonautonomous hybrid nonlinear complex system via a sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    4. Ahmad, Bashir & Ntouyas, Sotiris K. & Alsaedi, Ahmed, 2016. "On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 234-241.
    5. Yang, Yanling & Wang, Qiubao, 2023. "Capture of stochastic P-bifurcation in a delayed mechanical centrifugal governor," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    6. Longfei Lin & Yansheng Liu & Daliang Zhao, 2021. "Study on Implicit-Type Fractional Coupled System with Integral Boundary Conditions," Mathematics, MDPI, vol. 9(4), pages 1-15, February.
    7. Longfei Lin & Yansheng Liu & Daliang Zhao, 2021. "Controllability of Impulsive ψ -Caputo Fractional Evolution Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
    8. Chunlai Li & Jing Zhang, 2016. "Synchronisation of a fractional-order chaotic system using finite-time input-to-state stability," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(10), pages 2440-2448, July.
    9. Yu, Yongguang & Li, Han-Xiong, 2008. "The synchronization of fractional-order Rössler hyperchaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1393-1403.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    2. Ge, Zheng-Ming & Chang, Ching-Ming, 2009. "Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1959-1974.
    3. Ge, Zheng-Ming & Hsu, Mao-Yuan, 2008. "Chaos excited chaos synchronizations of integral and fractional order generalized van der Pol systems," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 592-604.
    4. Ge, Zheng-Ming & Hsu, Mao-Yuan, 2007. "Chaos in a generalized van der Pol system and in its fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1711-1745.
    5. Zhang, Fuchen & Shu, Yonglu & Yang, Hongliang & Li, Xiaowu, 2011. "Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 137-144.
    6. Ge, Zheng-Ming & Ou, Chan-Yi, 2008. "Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 705-717.
    7. Ge, Zheng-Ming & Lin, Guo-Hua, 2007. "The complete, lag and anticipated synchronization of a BLDCM chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 740-764.
    8. Chen, Juhn-Horng & Chen, Hsien-Keng & Lin, Yu-Kai, 2009. "Synchronization and anti-synchronization coexist in Chen–Lee chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 707-716.
    9. Sun, Yeong-Jeu, 2009. "Exponential synchronization between two classes of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2363-2368.
    10. Yu, Yongguang, 2008. "Adaptive synchronization of a unified chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 329-333.
    11. Wang, Zheng & Chau, K.T., 2008. "Anti-control of chaos of a permanent magnet DC motor system for vibratory compactors," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 694-708.
    12. Chang, Wei-Der, 2009. "PID control for chaotic synchronization using particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 910-917.
    13. Yu, Yongguang, 2007. "The synchronization for time-delay of linearly bidirectional coupled chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1197-1203.
    14. Chen, Heng-Hui, 2009. "Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 466-473.
    15. Liu, Bo & Wang, Ling & Jin, Yi-Hui & Tang, Fang & Huang, De-Xian, 2006. "Directing orbits of chaotic systems by particle swarm optimization," Chaos, Solitons & Fractals, Elsevier, vol. 29(2), pages 454-461.
    16. Wei, Zhouchao & Akgul, Akif & Kocamaz, Uğur Erkin & Moroz, Irene & Zhang, Wei, 2018. "Control, electronic circuit application and fractional-order analysis of hidden chaotic attractors in the self-exciting homopolar disc dynamo," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 157-168.
    17. Ge, Zheng-Ming & Zhang, An-Ray, 2007. "Chaos in a modified van der Pol system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1791-1822.
    18. Hu, Wuhua & Wang, Jiang & Li, Xiumin, 2009. "An approach of partial control design for system control and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1410-1417.
    19. Li, Damei & Wang, Pei & Lu, Jun-an, 2009. "Some synchronization strategies for a four-scroll chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2553-2559.
    20. Tang, Yinggan & Guan, Xinping, 2009. "Parameter estimation of chaotic system with time-delay: A differential evolution approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3132-3139.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:33:y:2007:i:1:p:270-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.