IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v33y2007i5p1711-1745.html
   My bibliography  Save this article

Chaos in a generalized van der Pol system and in its fractional order system

Author

Listed:
  • Ge, Zheng-Ming
  • Hsu, Mao-Yuan

Abstract

In this paper, chaos of a generalized van der Pol system with fractional orders is studied. Both nonautonomous and autonomous systems are considered in detail. Chaos in the nonautonomous generalized van der Pol system excited by a sinusoidal time function with fractional orders is studied. Next, chaos in the autonomous generalized van der Pol system with fractional orders is considered. By numerical analyses, such as phase portraits, Poincaré maps and bifurcation diagrams, periodic, and chaotic motions are observed. Finally, it is found that chaos exists in the fractional order system with the order both less than and more than the number of the states of the integer order generalized van der Pol system.

Suggested Citation

  • Ge, Zheng-Ming & Hsu, Mao-Yuan, 2007. "Chaos in a generalized van der Pol system and in its fractional order system," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1711-1745.
  • Handle: RePEc:eee:chsofr:v:33:y:2007:i:5:p:1711-1745
    DOI: 10.1016/j.chaos.2006.03.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906002323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.03.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. dos Santos, Angela M. & Lopes, Sergio R. & Viana, R.L.Ricardo L., 2004. "Rhythm synchronization and chaotic modulation of coupled Van der Pol oscillators in a model for the heartbeat," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(3), pages 335-355.
    2. Ge, Z.-M. & Cheng, J.-W., 2005. "Chaos synchronization and parameter identification of three time scales brushless DC motor system," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 597-616.
    3. Ge, Zheng-Ming & Lee, Ching-I, 2005. "Control, anticontrol and synchronization of chaos for an autonomous rotational machine system with time-delay," Chaos, Solitons & Fractals, Elsevier, vol. 23(5), pages 1855-1864.
    4. Ge, Zheng-Ming & Chen, Yen-Sheng, 2005. "Adaptive synchronization of unidirectional and mutual coupled chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 881-888.
    5. Ahmad, Wajdi M., 2005. "Hyperchaos in fractional order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1459-1465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Chia-Hung & Huang, Cong-Hui & Du, Yi-Chun & Chen, Jian-Liung, 2011. "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Applied Energy, Elsevier, vol. 88(12), pages 4840-4847.
    2. Deng, Hongmin & Li, Tao & Wang, Qionghua & Li, Hongbin, 2009. "A fractional-order hyperchaotic system and its synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 962-969.
    3. Liang Chen & Chengdai Huang & Haidong Liu & Yonghui Xia, 2019. "Anti-Synchronization of a Class of Chaotic Systems with Application to Lorenz System: A Unified Analysis of the Integer Order and Fractional Order," Mathematics, MDPI, vol. 7(6), pages 1-16, June.
    4. Zhang, Weiwei & Zhou, Shangbo & Li, Hua & Zhu, Hao, 2009. "Chaos in a fractional-order Rössler system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1684-1691.
    5. Yu, Yongguang & Li, Han-Xiong, 2008. "The synchronization of fractional-order Rössler hyperchaotic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(5), pages 1393-1403.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Zheng-Ming & Hsu, Mao-Yuan, 2008. "Chaos excited chaos synchronizations of integral and fractional order generalized van der Pol systems," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 592-604.
    2. Ge, Zheng-Ming & Jhuang, Wei-Ren, 2007. "Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 270-289.
    3. Ge, Zheng-Ming & Yi, Chang-Xian, 2007. "Chaos in a nonlinear damped Mathieu system, in a nano resonator system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(1), pages 42-61.
    4. Ge, Zheng-Ming & Lin, Guo-Hua, 2007. "The complete, lag and anticipated synchronization of a BLDCM chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 740-764.
    5. Ge, Zheng-Ming & Chang, Ching-Ming, 2009. "Nonlinear generalized synchronization of chaotic systems by pure error dynamics and elaborate nondiagonal Lyapunov function," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1959-1974.
    6. Ge, Zheng-Ming & Ou, Chan-Yi, 2008. "Chaos synchronization of fractional order modified duffing systems with parameters excited by a chaotic signal," Chaos, Solitons & Fractals, Elsevier, vol. 35(4), pages 705-717.
    7. Wang, Zheng & Chau, K.T., 2008. "Anti-control of chaos of a permanent magnet DC motor system for vibratory compactors," Chaos, Solitons & Fractals, Elsevier, vol. 36(3), pages 694-708.
    8. Chen, Juhn-Horng & Chen, Hsien-Keng & Lin, Yu-Kai, 2009. "Synchronization and anti-synchronization coexist in Chen–Lee chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 39(2), pages 707-716.
    9. Ge, Zheng-Ming & Zhang, An-Ray, 2007. "Chaos in a modified van der Pol system and in its fractional order systems," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1791-1822.
    10. Tam, Lap Mou & Si Tou, Wai Meng, 2008. "Parametric study of the fractional-order Chen–Lee system," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 817-826.
    11. dos Santos, A.M. & Lopes, S.R. & Viana, R.L., 2008. "Synchronization regimes for two coupled noisy Liénard-type driven oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 901-910.
    12. Petráš, Ivo, 2008. "A note on the fractional-order Chua’s system," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 140-147.
    13. Yan, Jun-Juh & Lin, Jui-Sheng & Liao, Teh-Lu, 2007. "Robust dynamic compensator for a class of time delay systems containing saturating control input," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1223-1231.
    14. Gois, Sandra R.F.S.M. & Savi, Marcelo A., 2009. "An analysis of heart rhythm dynamics using a three-coupled oscillator model," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2553-2565.
    15. Du, Shengzhi & van Wyk, Barend J. & Qi, Guoyuan & Tu, Chunling, 2009. "Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1900-1913.
    16. Hallaji, Majid & Dideban, Abbas & Khanesar, Mojtaba Ahmadieh & kamyad, Ali vahidyan, 2018. "Optimal synchronization of non-smooth fractional order chaotic systems with uncertainty based on extension of a numerical approach in fractional optimal control problems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 325-340.
    17. Chang, Wei-Der, 2006. "Parameter identification of Rossler’s chaotic system by an evolutionary algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 29(5), pages 1047-1053.
    18. Acosta, A. & Gallo, R. & García, P. & Peluffo-Ordóñez, D., 2023. "Positive invariant regions for a modified Van Der Pol equation modeling heart action," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    19. Tsapla Fotsa, R. & Woafo, P., 2016. "Chaos in a new bistable rotating electromechanical system," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 48-57.
    20. Zribi, Mohamed & Oteafy, Ahmed & Smaoui, Nejib, 2009. "Controlling chaos in the permanent magnet synchronous motor," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1266-1276.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:33:y:2007:i:5:p:1711-1745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.