IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v32y2007i5p1637-1644.html
   My bibliography  Save this article

Implications of minimal length scale on the statistical mechanics of ideal gas

Author

Listed:
  • Nozari, Kourosh
  • Mehdipour, S. Hamid

Abstract

Several alternative approaches to quantum gravity problem suggest the modification of the fundamental volume ω0 of the accessible phase space for representative points. This modified fundamental volume has a novel momentum dependence. In this paper, we study the effects of this modification on the thermodynamics of an ideal gas within the micro-canonical ensemble and using the generalized uncertainty principle (GUP). Although the induced modifications are important only in quantum gravity era, possible experimental manifestation of these effects may provides strong support for underlying quantum gravity proposal.

Suggested Citation

  • Nozari, Kourosh & Mehdipour, S. Hamid, 2007. "Implications of minimal length scale on the statistical mechanics of ideal gas," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1637-1644.
  • Handle: RePEc:eee:chsofr:v:32:y:2007:i:5:p:1637-1644
    DOI: 10.1016/j.chaos.2006.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077906008824
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2006.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El Naschie, M.S., 2006. "Elementary prerequisites for E-infinity," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 579-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bensalem, Salaheddine & Bouaziz, Djamil, 2022. "Thermostatistics in deformed space with maximal length," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    2. Bensalem, Salaheddine & Bouaziz, Djamil, 2019. "Statistical description of an ideal gas in maximum length quantum mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 583-592.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El Naschie, M.S., 2007. "Feigenbaum scenario for turbulence and Cantorian E-infinity theory of high energy particle physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 911-915.
    2. El Naschie, M.S., 2007. "On the universality class of all universality classes and E-infinity spacetime physics," Chaos, Solitons & Fractals, Elsevier, vol. 32(3), pages 927-936.
    3. El Naschie, M.S., 2009. "Arguments for the compactness and multiple connectivity of our cosmic spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2787-2789.
    4. El Naschie, M.S., 2008. "Quarks confinement," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 6-8.
    5. Liang, Y.S. & Su, W.Y., 2007. "The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 682-692.
    6. El Naschie, M.S., 2008. "The fundamental algebraic equations of the constants of nature," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 320-322.
    7. El Naschie, M.S., 2008. "Quarks confinement via Kaluza–Klein theory as a topological property of quantum classical spacetime phase transition," Chaos, Solitons & Fractals, Elsevier, vol. 35(5), pages 825-829.
    8. Wu, Yahao & Wang, Xiao-Tian & Wu, Min, 2009. "Fractional-moment CAPM with loss aversion," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1406-1414.
    9. Liu, Zhanwei & Hu, Guoen & Lu, Zhibo, 2009. "Parseval frame scaling sets and MSF Parseval frame wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1966-1974.
    10. Li, Dengfeng & Wu, Guochang, 2009. "Construction of a class of Daubechies type wavelet bases," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 620-625.
    11. El Naschie, M.S., 2008. "Hierarchy of kissing numbers for exceptional Lie symmetry groups in high energy physics," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 420-422.
    12. Özer, Mehmet Naci & Taşcan, Filiz, 2009. "Derivation of Korteweg–de Vries flow equations from nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2265-2270.
    13. El Naschie, M.S., 2008. "Conjectures regarding kissing spheres hierarchy and quantum gravity unification," Chaos, Solitons & Fractals, Elsevier, vol. 35(2), pages 346-350.
    14. Yuan, De-you & Du, Shu-de & Cheng, Zheng-xing, 2009. "Design and properties of vector-valued wavelets associated with an orthogonal vector-valued scaling function," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1368-1376.
    15. El Naschie, M.S., 2006. "Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1025-1033.
    16. Marek-Crnjac, L., 2008. "From Arthur Cayley via Felix Klein, Sophus Lie, Wilhelm Killing, Elie Cartan, Emmy Noether and superstrings to Cantorian space–time," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1279-1288.
    17. El Naschie, M.S., 2007. "The Fibonacci code behind super strings and P-Branes. An answer to M. Kaku’s fundamental question," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 537-547.
    18. He, Ji-Huan & Wan, Yu-Qin & Xu, Lan, 2007. "Nano-effects, quantum-like properties in electrospun nanofibers," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 26-37.
    19. He, Ji-Huan, 2007. "On the number of elementary particles in a resolution dependent fractal spacetime," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1645-1648.
    20. El Naschie, M.S., 2007. "Estimating the experimental value of the electromagnetic fine structure constant α¯0=1/137.036 using the Leech lattice in conjunction with the monster group and Spher’s kissing number in 24 dimensions," Chaos, Solitons & Fractals, Elsevier, vol. 32(2), pages 383-387.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:32:y:2007:i:5:p:1637-1644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.