IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v30y2006i5p1206-1212.html
   My bibliography  Save this article

Application of He’s homotopy perturbation method for Laplace transform

Author

Listed:
  • Abbasbandy, S.

Abstract

In this paper, an application of He’s homotopy perturbation method is proposed to compute Laplace transform. The results reveal that the method is very effective and simple.

Suggested Citation

  • Abbasbandy, S., 2006. "Application of He’s homotopy perturbation method for Laplace transform," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1206-1212.
  • Handle: RePEc:eee:chsofr:v:30:y:2006:i:5:p:1206-1212
    DOI: 10.1016/j.chaos.2005.08.178
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007790500857X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.08.178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Ji-Huan, 2005. "Application of homotopy perturbation method to nonlinear wave equations," Chaos, Solitons & Fractals, Elsevier, vol. 26(3), pages 695-700.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusufoğlu (Agadjanov), Elcin, 2009. "Improved homotopy perturbation method for solving Fredholm type integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 28-37.
    2. Ravi Kanth, A.S.V. & Aruna, K., 2009. "He’s homotopy-perturbation method for solving higher-order boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 41(4), pages 1905-1909.
    3. Cai, Xu-Chu & Wu, Wen-Ying, 2009. "Homotopy perturbation method for nonlinear oscillator equations," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2581-2583.
    4. Beléndez, A. & Beléndez, T. & Márquez, A. & Neipp, C., 2008. "Application of He’s homotopy perturbation method to conservative truly nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 770-780.
    5. Jules Sadefo-Kamdem, 2011. "Integral Transforms With The Homotopy Perturbation Method And Some Applications," Working Papers hal-00580023, HAL.
    6. Fathizadeh, M. & Rashidi, F., 2009. "Boundary layer convective heat transfer with pressure gradient using Homotopy Perturbation Method (HPM) over a flat plate," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2413-2419.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Ji-Huan, 2009. "Nonlinear science as a fluctuating research frontier," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2533-2537.
    2. Abbasbandy, S., 2007. "A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 257-260.
    3. Çelik, Nisa & Seadawy, Aly R. & Sağlam Özkan, Yeşim & Yaşar, Emrullah, 2021. "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Alipanah, Amjad & Zafari, Mahnaz, 2023. "Collocation method using auto-correlation functions of compact supported wavelets for solving Volterra’s population model," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    6. Yu, Guo-Fu & Tam, Hon-Wah, 2006. "Conservation laws for two (2+1)-dimensional differential–difference systems," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 189-196.
    7. Moghimi, Mahdi & Hejazi, Fatemeh S.A., 2007. "Variational iteration method for solving generalized Burger–Fisher and Burger equations," Chaos, Solitons & Fractals, Elsevier, vol. 33(5), pages 1756-1761.
    8. Keramati, B., 2009. "An approach to the solution of linear system of equations by He’s homotopy perturbation method," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 152-156.
    9. Demiray, Hilmi, 2006. "Interaction of nonlinear waves governed by Boussinesq equation," Chaos, Solitons & Fractals, Elsevier, vol. 30(5), pages 1185-1189.
    10. Siddiqui, A.M. & Ahmed, M. & Ghori, Q.K., 2007. "Thin film flow of non-Newtonian fluids on a moving belt," Chaos, Solitons & Fractals, Elsevier, vol. 33(3), pages 1006-1016.
    11. Shidfar, A. & Molabahrami, A. & Babaei, A. & Yazdanian, A., 2009. "A study on the d-dimensional Schrödinger equation with a power-law nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2154-2158.
    12. Ramos, J.I., 2009. "Piecewise-adaptive decomposition methods," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1623-1636.
    13. Mădălina Sofia Paşca & Olivia Bundău & Adina Juratoni & Bogdan Căruntu, 2022. "The Least Squares Homotopy Perturbation Method for Systems of Differential Equations with Application to a Blood Flow Model," Mathematics, MDPI, vol. 10(4), pages 1-14, February.
    14. Al-Khaled, Kamel, 2007. "Theory and computation in singular boundary value problems," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 678-684.
    15. Golbabai, A. & Javidi, M., 2009. "A spectral domain decomposition approach for the generalized Burger’s–Fisher equation," Chaos, Solitons & Fractals, Elsevier, vol. 39(1), pages 385-392.
    16. Mei, Shu-Li & Du, Cheng-Jin & Zhang, Sen-Wen, 2008. "Asymptotic numerical method for multi-degree-of-freedom nonlinear dynamic systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 536-542.
    17. Biazar, J. & Eslami, M. & Aminikhah, H., 2009. "Application of homotopy perturbation method for systems of Volterra integral equations of the first kind," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3020-3026.
    18. Odibat, Zaid M., 2009. "Exact solitary solutions for variants of the KdV equations with fractional time derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 40(3), pages 1264-1270.
    19. Mossa Al-sawalha, M. & Noorani, M.S.M., 2009. "A numeric–analytic method for approximating the chaotic Chen system," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1784-1791.
    20. Xu, Wei & Shen, Jianwei, 2008. "Solitary and periodic traveling wave solutions for a class of coupled nonlinear Klein–Gordon equations," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 912-917.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:30:y:2006:i:5:p:1206-1212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.