IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v27y2006i1p159-173.html
   My bibliography  Save this article

On chaotic graphs and applications in physics and biology

Author

Listed:
  • El-Ghoul, M.
  • El-Ahmady, A.E.
  • Homoda, T.

Abstract

El Naschie’s ε∞ theory in Quantum space time is given and discussed geometrically and topologically as a category of fuzzy spaces, these fuzzy categories in which lines are fuzzy fractal lines. In this paper, we represent the chaotic graphs as many fuzzy fractal lines up to ∞. We will describe them by chaotic matrices. Many fuzzy systems (chaotic systems) are described and applied in [8–12]. This article introduces some operations on the chaotic graphs such as the union and the intersection; also both of the chaotic incidence matrices and the chaotic adjacency matrices representing the chaotic graphs induced from these operations will be studied. Theorems governing these studies are obtained. Some applications on chaotic graphs are given [18–21].

Suggested Citation

  • El-Ghoul, M. & El-Ahmady, A.E. & Homoda, T., 2006. "On chaotic graphs and applications in physics and biology," Chaos, Solitons & Fractals, Elsevier, vol. 27(1), pages 159-173.
  • Handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:159-173
    DOI: 10.1016/j.chaos.2005.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077905002730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2005.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanaka, Yosuke & Mizuno, Yuzi & Kado, Tatsuhiko, 2005. "Chaotic dynamics in the Friedmann equation," Chaos, Solitons & Fractals, Elsevier, vol. 24(2), pages 407-422.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khastan, A. & Ivaz, K., 2009. "Numerical solution of fuzzy differential equations by Nyström method," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 859-868.
    2. Ismat Beg & Shaban Sedghi & Nabi Shobe, 2013. "Fixed Point Theorems in Fuzzy Metric Spaces," International Journal of Analysis, Hindawi, vol. 2013, pages 1-4, January.
    3. Saadati, Reza, 2008. "Notes to the paper “Fixed points in intuitionistic fuzzy metric spaces” and its generalization to L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 176-180.
    4. Cho, Yeol Je & Sedghi, Shaban & Shobe, Nabi, 2009. "Generalized fixed point theorems for compatible mappings with some types in fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 39(5), pages 2233-2244.
    5. Abbasbandy, S. & Adabitabar Firozja, M., 2007. "Fuzzy linguistic model for interpolation," Chaos, Solitons & Fractals, Elsevier, vol. 34(2), pages 551-556.
    6. Saadati, R. & Sedghi, S. & Shobe, N., 2008. "Modified intuitionistic fuzzy metric spaces and some fixed point theorems," Chaos, Solitons & Fractals, Elsevier, vol. 38(1), pages 36-47.
    7. Goudarzi, M. & Vaezpour, S.M. & Saadati, R., 2009. "On the intuitionistic fuzzy inner product spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1105-1112.
    8. Abbasbandy, S. & Otadi, M. & Mosleh, M., 2008. "Minimal solution of general dual fuzzy linear systems," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 1113-1124.
    9. Soleimani-damaneh, M., 2008. "Fuzzy upper bounds and their applications," Chaos, Solitons & Fractals, Elsevier, vol. 36(2), pages 217-225.
    10. Abbasbandy, S. & Nieto, Juan J. & Alavi, M., 2005. "Tuning of reachable set in one dimensional fuzzy differential inclusions," Chaos, Solitons & Fractals, Elsevier, vol. 26(5), pages 1337-1341.
    11. Sedghi, Shaban & Shobe, Nabi & Žikić-Došenović, Tatjana, 2009. "A common fixed point theorem in two complete fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2590-2596.
    12. Nieto, Juan J. & Rodríguez-López, Rosana, 2006. "Bounded solutions for fuzzy differential and integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1376-1386.
    13. Tanaka, Yosuke & Mizuno, Yuji & Kado, Tatsuhiko & Zhao, Hua-An, 2007. "Nonlinear dynamics in the relativistic field equation," Chaos, Solitons & Fractals, Elsevier, vol. 31(5), pages 1054-1075.
    14. Tanaka, Yosuke & Mizuno, Yuji & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Nonlinear dynamics in the Einstein–Friedmann equation," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 533-549.
    15. Tanaka, Yosuke & Shudo, Takefumi & Yosinaga, Tetsutaro & Kimura, Hiroshi, 2008. "Relativistic field equations and nonlinear dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 37(4), pages 941-949.
    16. Tanaka, Yosuke & Nakano, Shingo & Ohta, Shigetoshi & Mori, Keisuke & Horiuchi, Tanji, 2009. "Einstein–Friedmann equation, nonlinear dynamics and chaotic behaviours," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2159-2173.
    17. Saadati, Reza & Razani, Abdolrahman & Adibi, H., 2007. "A common fixed point theorem in L-fuzzy metric spaces," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 358-363.
    18. Deschrijver, Glad & O’Regan, Donal & Saadati, Reza & Mansour Vaezpour, S., 2009. "L-Fuzzy Euclidean normed spaces and compactness," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 40-45.
    19. Abbasbandy, S. & Babolian, E. & Alavi, M., 2007. "Numerical method for solving linear Fredholm fuzzy integral equations of the second kind," Chaos, Solitons & Fractals, Elsevier, vol. 31(1), pages 138-146.
    20. Sadeqi, I. & Solaty kia, F., 2009. "Some fixed point theorems in fuzzy reflexive Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2606-2612.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:27:y:2006:i:1:p:159-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.