IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008385.html
   My bibliography  Save this article

A simple model of global cascades in signed networks

Author

Listed:
  • Ke, Xingfu
  • Wen, Youjin
  • Yu, Hao
  • Meng, Fanyuan

Abstract

Negative relationships play a crucial role in the diffusion of information across social networks. To explore this phenomenon, we introduce a threshold model for information cascades in signed networks, which includes a weighted parameter α∈(−∞,1] to represent the impact of negative links, causing decay or negative influence. Using rigorous mean-field analysis, we identify the conditions that enable global cascades. Interestingly, we find that negative α results in the same cascade conditions as α=0. Furthermore, with negative α, the relationship between average degree and cascade size forms a bell-shaped curve, leading to second-order phase transitions at both low and high average degrees. These findings are consistent across random networks with Poisson and scale-free degree distributions. Overall, this research provides a theoretical framework for understanding the effects of negative connections on information diffusion in social networks, offering important insights into cascade dynamics and practical strategies for managing information dissemination in real-world contexts.

Suggested Citation

  • Ke, Xingfu & Wen, Youjin & Yu, Hao & Meng, Fanyuan, 2024. "A simple model of global cascades in signed networks," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008385
    DOI: 10.1016/j.chaos.2024.115286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    2. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    3. Acemoglu, Daron & Ozdaglar, Asuman & ParandehGheibi, Ali, 2010. "Spread of (mis)information in social networks," Games and Economic Behavior, Elsevier, vol. 70(2), pages 194-227, November.
    4. Lee, Kyu-Min & Lee, Sungmin & Min, Byungjoon & Goh, K.-I., 2023. "Threshold cascade dynamics on signed random networks," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Xiaochen He & Haifeng Du & Marcus W Feldman & Guangyu Li, 2019. "Information diffusion in signed networks," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-21, October.
    6. Barabási, Albert-László & Albert, Réka & Jeong, Hawoong, 1999. "Mean-field theory for scale-free random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 272(1), pages 173-187.
    7. Yang, Pingle & Meng, Fanyuan & Zhao, Laijun & Zhou, Lixin, 2023. "AOGC: An improved gravity centrality based on an adaptive truncation radius and omni-channel paths for identifying key nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Yang & Jiang, Haijun & Mei, Xuehui & Li, Jiarong & Yu, Shuzhen, 2024. "Dynamical analysis of a stochastic Hyper-INPR competitive information propagation model," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    2. Buechel, Berno & Klößner, Stefan & Meng, Fanyuan & Nassar, Anis, 2023. "Misinformation due to asymmetric information sharing," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    3. Prummer, Anja & Siedlarek, Jan-Peter, 2017. "Community leaders and the preservation of cultural traits," Journal of Economic Theory, Elsevier, vol. 168(C), pages 143-176.
    4. Riazi, Diana & Livan, Giacomo, 2024. "Public and private beliefs under disinformation in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    5. Foerster, Manuel, 2019. "Dynamics of strategic information transmission in social networks," Theoretical Economics, Econometric Society, vol. 14(1), January.
    6. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska & Emily Tanimura, 2015. "Strategic influence in social networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01158168, HAL.
    7. Pongou, Roland & Tchuente, Guy & Tondji, Jean-Baptiste, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," GLO Discussion Paper Series 957, Global Labor Organization (GLO).
    8. Förster, Manuel & Mauleon, Ana & Vannetelbosch, Vincent J., 2016. "Trust and manipulation in social networks," Network Science, Cambridge University Press, vol. 4(2), pages 216-243, June.
    9. Eger, Steffen, 2016. "Opinion dynamics and wisdom under out-group discrimination," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 97-107.
    10. Fernandes, Marcos R., 2023. "Confirmation bias in social networks," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 59-76.
    11. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," Papers 2110.10230, arXiv.org.
    12. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2023. "Optimal interventions in networks during a pandemic," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(2), pages 847-883, April.
    13. Foerster, Manuel, 2018. "Finite languages, persuasion bias, and opinion fluctuations," Journal of Economic Behavior & Organization, Elsevier, vol. 149(C), pages 46-57.
    14. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    15. Liang, Wei & Shi, Yuming & Huang, Qiuling, 2014. "Modeling the Chinese language as an evolving network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 268-276.
    16. Manuel Förster & Michel Grabisch & Agnieszka Rusinowska, 2012. "Ordered Weighted Averaging in Social Networks," Documents de travail du Centre d'Economie de la Sorbonne 12056, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    17. Yan Qiang & Bo Pei & Weili Wu & Juanjuan Zhao & Xiaolong Zhang & Yue Li & Lidong Wu, 2014. "Improvement of path analysis algorithm in social networks based on HBase," Journal of Combinatorial Optimization, Springer, vol. 28(3), pages 588-599, October.
    18. Pi, Xiaochen & Tang, Longkun & Chen, Xiangzhong, 2021. "A directed weighted scale-free network model with an adaptive evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    19. Stephanie Rend'on de la Torre & Jaan Kalda & Robert Kitt & Juri Engelbrecht, 2016. "On the topologic structure of economic complex networks: Empirical evidence from large scale payment network of Estonia," Papers 1602.04352, arXiv.org.
    20. Yoshiharu Maeno & Kenji Nishiguchi & Satoshi Morinaga & Hirokazu Matsushima, 2014. "Impact of credit default swaps on financial contagion," Papers 1411.1356, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.