IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924008208.html
   My bibliography  Save this article

A new approach to constructing probability distributions of fractional counting processes

Author

Listed:
  • Laskin, Nick

Abstract

A new approach to the direct construction of probability distribution functions of fractional counting processes without the use of fractional differential and integral operators is presented. The approach is an alternative to currently existing three fundamental methods to introduce and study fractional Poisson process: fractional Kolmogorov–Feller equation, renewal theory with the Mittag-Leffler function as an interarrival time distribution and the inverse stable subordinator method. The resulting probability distributions are well suited for studying various systems and processes that exhibit long-memory behavior. Applications of the developed approach cover topics in enumerative combinatorics and quantum optics.

Suggested Citation

  • Laskin, Nick, 2024. "A new approach to constructing probability distributions of fractional counting processes," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008208
    DOI: 10.1016/j.chaos.2024.115268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924008208
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. K. Kataria & M. Khandakar, 2022. "Generalized Fractional Counting Process," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2784-2805, December.
    2. Orsingher, Enzo & Polito, Federico, 2012. "The space-fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 852-858.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beghin, Luisa & Macci, Claudio, 2013. "Large deviations for fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1193-1202.
    2. Maheshwari, Aditya, 2023. "Tempered space fractional negative binomial process," Statistics & Probability Letters, Elsevier, vol. 196(C).
    3. Kataria, K.K. & Khandakar, M., 2022. "Extended eigenvalue–eigenvector method," Statistics & Probability Letters, Elsevier, vol. 183(C).
    4. Orsingher, Enzo & Polito, Federico, 2013. "On the integral of fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1006-1017.
    5. L. Beghin & P. Vellaisamy, 2018. "Space-Fractional Versions of the Negative Binomial and Polya-Type Processes," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 463-485, June.
    6. Kataria, K.K. & Vellaisamy, P., 2017. "Saigo space–time fractional Poisson process via Adomian decomposition method," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 69-80.
    7. K. K. Kataria & M. Khandakar, 2022. "Generalized Fractional Counting Process," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2784-2805, December.
    8. Ritik Soni & Ashok Kumar Pathak, 2024. "Generalized Iterated Poisson Process and Applications," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3216-3245, November.
    9. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    10. Tapiero, Charles S. & Vallois, Pierre, 2016. "Fractional randomness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1161-1177.
    11. K. K. Kataria & P. Vellaisamy, 2019. "On Distributions of Certain State-Dependent Fractional Point Processes," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1554-1580, September.
    12. Beghin, Luisa & Macci, Claudio, 2017. "Asymptotic results for a multivariate version of the alternative fractional Poisson process," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 260-268.
    13. A. Maheshwari & P. Vellaisamy, 2019. "Fractional Poisson Process Time-Changed by Lévy Subordinator and Its Inverse," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1278-1305, September.
    14. Beghin, Luisa & Macci, Claudio, 2022. "Non-central moderate deviations for compound fractional Poisson processes," Statistics & Probability Letters, Elsevier, vol. 185(C).
    15. Ritik Soni & Ashok Kumar Pathak, 2024. "Generalized Fractional Risk Process," Methodology and Computing in Applied Probability, Springer, vol. 26(4), pages 1-17, December.
    16. Roberto Garra & Enzo Orsingher & Federico Polito, 2018. "A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability," Mathematics, MDPI, vol. 6(1), pages 1-10, January.
    17. K. K. Kataria & M. Khandakar, 2021. "On the Long-Range Dependence of Mixed Fractional Poisson Process," Journal of Theoretical Probability, Springer, vol. 34(3), pages 1607-1622, September.
    18. Davide Cocco & Massimiliano Giona, 2021. "Generalized Counting Processes in a Stochastic Environment," Mathematics, MDPI, vol. 9(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924008208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.