IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v185y2024ics0960077924006830.html
   My bibliography  Save this article

A stochastic hormesis Ricker model and its application to multiple fields

Author

Listed:
  • Yan, Dingding
  • He, Mengqi
  • Cheke, Robert A.
  • Zhang, Qianqian
  • Tang, Sanyi

Abstract

Random noise pervades ecosystems and has the potential for having major impacts on the growth processes of pest populations. In this paper, we aim to investigate the impact of random perturbations on the hormesis Ricker model by considering control measures applied within each generation which can generate hormetic effects, where randomness is characterized by a uniform discrete distribution and white noise, respectively. The main results indicate that the addition of discrete randomness will make the model appear with blurred orbits when the intrinsic growth rate is large enough. The position of the random variable, at the end of each generation or within each generation, cause the blurred orbits to exhibit various forms. Moreover, the effects of variances and expectations of the discrete uniform random variable on the dynamics are evaluated. Further, the introduction of randomness increases the hormetic zone and the maximum response, but can increase or decrease the monotonically increasing interval under different parameter values. In contrast, the stochastic model characterized by white noise, exhibits only a small effect on the bifurcation diagrams with respect to the intrinsic growth rate and the hormesis, which may be attributed to the mean of its noise being zero. Finally, we fit the stochastic model to experimental hormetic data sets observed in multiple fields, and our results demonstrate that the stochastic hormesis Ricker model can capture the characteristics of these data accurately. These findings could provide valuable insights into the understanding of the complexities of pest population dynamics, with implications for better pest control, resource management and for other complex biological systems such as toxicology and drug development.

Suggested Citation

  • Yan, Dingding & He, Mengqi & Cheke, Robert A. & Zhang, Qianqian & Tang, Sanyi, 2024. "A stochastic hormesis Ricker model and its application to multiple fields," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006830
    DOI: 10.1016/j.chaos.2024.115131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924006830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward J Calabrese & Linda A Baldwin, 2003. "Toxicology rethinks its central belief," Nature, Nature, vol. 421(6924), pages 691-692, February.
    2. Song, Liwen & Tang, Sanyi & Xiang, Changcheng & Cheke, Robert A. & He, Sha, 2023. "Modelling and bifurcation analysis of spatiotemporal hormetic effects on pest control," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Kang, Li & Tang, Sanyi, 2016. "The reverse effects of random perturbation on discrete systems for single and multiple population models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 198-209.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Jaworowski, 2004. "Chernobyl, Nuclear Wastes and Nature," Energy & Environment, , vol. 15(5), pages 807-824, September.
    2. Brian H. MacGillivray, 2014. "Heuristics Structure and Pervade Formal Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(4), pages 771-787, April.
    3. Jaap C. Hanekamp & Aalt Bast, 2008. "Why RDAs and ULs Are Incompatible Standards in the U‐Shape Micronutrient Model: A Philosophically Orientated Analysis of Micronutrients' Standardizations," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1639-1652, December.
    4. repec:jss:jstsof:12:i05 is not listed on IDEAS
    5. Junyang Wu & Zhongwei Wu & Evgenios Agathokleous & Yongli Zhu & Diwu Fan & Jiangang Han, 2024. "Unveiling a New Perspective on Cadmium-Induced Hormesis in Soil Enzyme Activity: The Relative Importance of Enzymatic Reaction Kinetics and Microbial Communities," Agriculture, MDPI, vol. 14(6), pages 1-19, June.
    6. Song, Liwen & Tang, Sanyi & Xiang, Changcheng & Cheke, Robert A. & He, Sha, 2023. "Modelling and bifurcation analysis of spatiotemporal hormetic effects on pest control," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Alissa Cordner, 2015. "Defining and defending risk: conceptual risk formulas in environmental controversies," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 5(3), pages 241-250, September.
    8. Li, Qian & Xiao, Yanni, 2019. "Bifurcation analyses and hormetic effects of a discrete-time tumor model," Applied Mathematics and Computation, Elsevier, vol. 363(C), pages 1-1.
    9. Jason Vogel, 2004. "Tunnel vision: The regulation of endocrine disruptors," Policy Sciences, Springer;Society of Policy Sciences, vol. 37(3), pages 277-303, December.
    10. Anne Chapman, 2006. "Regulating Chemicals—From Risks to Riskiness," Risk Analysis, John Wiley & Sons, vol. 26(3), pages 603-616, June.
    11. Kun Qian & Xiaofeng Jiang & Laiyu Sun & Guoqing Zhou & Haixia Ge & Xinqiang Fang & Li Xiao & Qiong Wu, 2018. "Effect of Montmorillonite on 4-Nonylphenol Enrichment in Zebrafish," IJERPH, MDPI, vol. 15(6), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:185:y:2024:i:c:s0960077924006830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.