IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v451y2016icp190-197.html
   My bibliography  Save this article

The daily computed weighted averaging basic reproduction number R0,k,ωn for MERS-CoV in South Korea

Author

Listed:
  • Jeong, Darae
  • Lee, Chang Hyeong
  • Choi, Yongho
  • Kim, Junseok

Abstract

In this paper, we propose the daily computed weighted averaging basic reproduction number R0,k,ωn for Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, May to July 2015. We use an SIR model with piecewise constant parameters β (contact rate) and γ (removed rate). We use the explicit Euler’s method for the solution of the SIR model and a nonlinear least-square fitting procedure for finding the best parameters. In R0,k,ωn, the parameters n, k, and w denote days from a reference date, the number of days in averaging, and a weighting factor, respectively. We perform a series of numerical experiments and compare the results with the real-world data. In particular, using the predicted reproduction number based on the previous two consecutive reproduction numbers, we can predict the future behavior of the reproduction number.

Suggested Citation

  • Jeong, Darae & Lee, Chang Hyeong & Choi, Yongho & Kim, Junseok, 2016. "The daily computed weighted averaging basic reproduction number R0,k,ωn for MERS-CoV in South Korea," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 190-197.
  • Handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:190-197
    DOI: 10.1016/j.physa.2016.01.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116001266
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomes, Marcelo F.C. & Gonçalves, Sebastián, 2009. "SIR model with general distribution function in the infectious period," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3133-3142.
    2. Wang, Yi & Cao, Jinde & Alofi, Abdulaziz & AL-Mazrooei, Abdullah & Elaiw, Ahmed, 2015. "Revisiting node-based SIR models in complex networks with degree correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 75-88.
    3. Fu, Libi & Song, Weiguo & Lv, Wei & Lo, Siuming, 2014. "Simulation of emotional contagion using modified SIR model: A cellular automaton approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 380-391.
    4. Tornatore, Elisabetta & Maria Buccellato, Stefania & Vetro, Pasquale, 2005. "Stability of a stochastic SIR system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 111-126.
    5. Ji, Chunyan & Jiang, Daqing & Shi, Ningzhong, 2011. "Multigroup SIR epidemic model with stochastic perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(10), pages 1747-1762.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > MERS

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doménech-Carbó, Antonio & Doménech-Casasús, Clara, 2021. "The evolution of COVID-19: A discontinuous approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teng, Zhidong & Wang, Lei, 2016. "Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 507-518.
    2. Bobryk, R.V., 2021. "Stability analysis of a SIR epidemic model with random parametric perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    3. Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Su, Huishuang & Li, Xue, 2020. "Dynamic behaviors of a two-group stochastic SIRS epidemic model with standard incidence rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. El Fatini, Mohamed & El Khalifi, Mohamed & Gerlach, Richard & Laaribi, Aziz & Taki, Regragui, 2019. "Stationary distribution and threshold dynamics of a stochastic SIRS model with a general incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    5. Pan, Tao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "Extinction and periodic solutions for an impulsive SIR model with incidence rate stochastically perturbed," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 385-397.
    6. Zhao, Yanan & Jiang, Daqing & O’Regan, Donal, 2013. "The extinction and persistence of the stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4916-4927.
    7. Li, Shuang & Xiong, Jie, 2024. "SIR epidemic model with non-Lipschitz stochastic perturbations," Statistics & Probability Letters, Elsevier, vol. 210(C).
    8. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    9. Cheng, Yingying & Huo, Liang’an & Zhao, Laijun, 2020. "Rumor spreading in complex networks under stochastic node activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    10. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    11. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    12. William Brock & Anastasios Xepapadeas, 2020. "The Economy, Climate Change and Infectious Diseases: Links and Policy Implications," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 811-824, August.
    13. Zhiming Li & Zhidong Teng, 2019. "Analysis of uncertain SIS epidemic model with nonlinear incidence and demography," Fuzzy Optimization and Decision Making, Springer, vol. 18(4), pages 475-491, December.
    14. Zhu, He & Ma, Jing, 2019. "Analysis of SHIR rumor propagation in random heterogeneous networks with dynamic friendships," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 257-271.
    15. Zhou, Yanli & Yuan, Sanling & Zhao, Dianli, 2016. "Threshold behavior of a stochastic SIS model with Le´vy jumps," Applied Mathematics and Computation, Elsevier, vol. 275(C), pages 255-267.
    16. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    17. Hussain, Ghulam & Khan, Amir & Zahri, Mostafa & Zaman, Gul, 2022. "Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    18. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    19. Mann Manyombe, M.L. & Tsanou, B. & Mbang, J. & Bowong, S., 2017. "A metapopulation model for the population dynamics of anopheles mosquito," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 71-91.
    20. Lahrouz, Aadil & Omari, Lahcen, 2013. "Extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 960-968.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:190-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.