IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004910.html
   My bibliography  Save this article

Modulational instability of a harmonically trapped quantum droplet

Author

Listed:
  • Qi, Wei
  • Huang, Rui
  • Li, Haifeng
  • Dong, Liangwei

Abstract

We investigate the modulational instability (MI) of a harmonically trapped quantum droplet. The MI is the key mechanism for the formation of soliton trains in diverse physical media, as a result of the interplay between the intrinsic nonlinearity and the kinetic-energy term. Here, we analytically get the time-dependent criterion for MI of a trapped quantum droplets with Lee–Huang–Yang (LHY) term. It is shown that the external harmonic potential can dramatically change the condition of modulational instability. Moreover, we find that there exists a critical time tc, that is the biggest time before instability of droplet will set in. We find the tc depends on the harmonic trapping frequency k. Meanwhile, the results show that the trapping frequency k also determine the solitons’ types, a single peak soliton or a soliton train can be excited by the different k. Our theoretical predicts are confirmed by the direct numerical calculation of the generalized Gross–Pitaevskii equation with LHY correction term.

Suggested Citation

  • Qi, Wei & Huang, Rui & Li, Haifeng & Dong, Liangwei, 2024. "Modulational instability of a harmonically trapped quantum droplet," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004910
    DOI: 10.1016/j.chaos.2024.114939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004910
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthias Schmitt & Matthias Wenzel & Fabian Böttcher & Igor Ferrier-Barbut & Tilman Pfau, 2016. "Self-bound droplets of a dilute magnetic quantum liquid," Nature, Nature, vol. 539(7628), pages 259-262, November.
    2. Holger Kadau & Matthias Schmitt & Matthias Wenzel & Clarissa Wink & Thomas Maier & Igor Ferrier-Barbut & Tilman Pfau, 2016. "Observing the Rosensweig instability of a quantum ferrofluid," Nature, Nature, vol. 530(7589), pages 194-197, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Liangwei & Fan, Mingjing & Malomed, Boris A., 2024. "Stable higher-order vortex quantum droplets in an annular potential," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    2. Zhou, Zheng & Shi, Yimin & Tang, Shiqing & Deng, Haiming & Wang, Haibin & He, Xiongying & Zhong, Honghua, 2021. "Controllable dissipative quantum droplets in one-dimensional optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. J. Sánchez-Baena & C. Politi & F. Maucher & F. Ferlaino & T. Pohl, 2023. "Heating a dipolar quantum fluid into a solid," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    4. Jiang, Xunda & Zeng, Yue & Ji, Yikai & Liu, Bin & Qin, Xizhou & Li, Yongyao, 2022. "Vortex formation and quench dynamics of rotating quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    5. Shi, Zeyun & Badshah, Fazal & Qin, Lu, 2023. "Two-dimensional lattice soliton and pattern formation in a cold Rydberg atomic gas with nonlocal self-defocusing Kerr nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    6. Max Althön & Markus Exner & Richard Blättner & Herwig Ott, 2023. "Exploring the vibrational series of pure trilobite Rydberg molecules," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Zhao, Zi-bin & Chen, Gui-hua & Liu, Bin & Li, Yong-yao, 2022. "Discrete vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Ye, Zhi-Jiang & Chen, Yi-Xi & Zheng, Yi-Yin & Chen, Xiong-Wei & Liu, Bin, 2020. "Symmetry breaking of a matter-wave soliton in a double-well potential formed by spatially confined spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    9. Kartashov, Yaroslav V. & Zezyulin, Dmitry A., 2024. "Enhanced mobility of quantum droplets in periodic lattices," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    10. Huang, Hao & Wang, Hongcheng & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2022. "Binary-vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Zhao, Fei-yan & Yan, Zi-teng & Cai, Xiao-yan & Li, Chao-long & Chen, Gui-lian & He, He-xiang & Liu, Bin & Li, Yong-yao, 2021. "Discrete quantum droplets in one-dimensional optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.