IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004284.html
   My bibliography  Save this article

Controllability of Hilfer fractional neutral impulsive stochastic delayed differential equations with nonlocal conditions

Author

Listed:
  • Hussain, Sadam
  • Sarwar, Muhammad
  • Abodayeh, Kamaleldin
  • Promsakon, Chanon
  • Sitthiwirattham, Thanin

Abstract

In this paper, the controllability for Hilfer fractional neutral stochastic differential equations with infinite delay and nonlocal conditions has been investigated. Using concepts from fractional calculus, semigroup of operators, fixed-point theory, measures of noncompactness, and stochastic theory the main controllability conclusion is attained. The applications of the key findings are finally illustrated with two examples.

Suggested Citation

  • Hussain, Sadam & Sarwar, Muhammad & Abodayeh, Kamaleldin & Promsakon, Chanon & Sitthiwirattham, Thanin, 2024. "Controllability of Hilfer fractional neutral impulsive stochastic delayed differential equations with nonlocal conditions," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004284
    DOI: 10.1016/j.chaos.2024.114876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nisar, Kottakkaran Sooppy & Jothimani, K. & Kaliraj, K. & Ravichandran, C., 2021. "An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Thitiporn Linitda & Kulandhaivel Karthikeyan & Palanisamy Raja Sekar & Thanin Sitthiwirattham, 2023. "Analysis on Controllability Results for Impulsive Neutral Hilfer Fractional Differential Equations with Nonlocal Conditions," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    3. B. Radhakrishnan & T. Sathya, 2022. "Controllability of Hilfer Fractional Langevin Dynamical System with Impulse in an Abstract Weighted Space," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 265-281, October.
    4. JinRong Wang & Zhenbin Fan & Yong Zhou, 2012. "Nonlocal Controllability of Semilinear Dynamic Systems with Fractional Derivative in Banach Spaces," Journal of Optimization Theory and Applications, Springer, vol. 154(1), pages 292-302, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, JinRong & Fĕckan, Michal & Zhou, Yong, 2017. "Center stable manifold for planar fractional damped equations," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 257-269.
    2. Ahmed, Hamdy M. & Zhu, Quanxin, 2023. "Exploration nonlocal controllability for Hilfer fractional differential inclusions with Clarke subdifferential and nonlinear noise," Statistics & Probability Letters, Elsevier, vol. 195(C).
    3. Lakshmi Priya, P.K. & Kaliraj, K., 2022. "An application of fixed point technique of Rothe’s-type to interpret the controllability criteria of neutral nonlinear fractional ordered impulsive system," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    4. Valliammal, N. & Ravichandran, C. & Nisar, Kottakkaran Sooppy, 2020. "Solutions to fractional neutral delay differential nonlocal systems," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Veeresha, P., 2022. "The efficient fractional order based approach to analyze chemical reaction associated with pattern formation," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Kaliraj, K. & Manjula, M. & Ravichandran, C., 2022. "New existence results on nonlocal neutral fractional differential equation in concepts of Caputo derivative with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    7. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on the existence and controllability of fractional integro-differential system of order 1 < r < 2 via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Michal Fec̆kan & JinRong Wang & Yong Zhou, 2013. "Controllability of Fractional Functional Evolution Equations of Sobolev Type via Characteristic Solution Operators," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 79-95, January.
    9. JinRong Wang & Michal Fec̆kan & Yong Zhou, 2013. "Relaxed Controls for Nonlinear Fractional Impulsive Evolution Equations," Journal of Optimization Theory and Applications, Springer, vol. 156(1), pages 13-32, January.
    10. Zhang, Chuanlin & Ye, Guoju & Liu, Wei & Liu, Xuelong, 2024. "On controllability for Sobolev-type fuzzy Hilfer fractional integro-differential inclusions with Clarke subdifferential," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    11. Kavitha, K. & Vijayakumar, V. & Udhayakumar, R., 2020. "Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.