IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924003230.html
   My bibliography  Save this article

Analytical solution for the long- and short-range every-pair-interactions system

Author

Listed:
  • Ribeiro, Fabiano L.
  • Li, Yunfei
  • Born, Stefan
  • Rybski, Diego

Abstract

Many physical, biological, and social systems exhibit emergent properties arising from their components’ interactions (cells). In this study, we systematically treat every-pair interactions (a) that exhibit power-law dependence on the Euclidean distance and (b) act in structures that can be characterized using fractal geometry. It can represent the two-body interaction potential, the heat flux between two parts of a structure, friendship strength between two people, etc.. We analytically derive the average intensity of influence that one cell has on the others or, conversely, receives from them. This quantity is referred to as the mean interaction field of the cells, and we find that (i) in a long-range interaction regime, the mean interaction field increases following a power-law with the size of the system, (ii) in a short-range interaction regime, the field saturates, and (iii) in the intermediate range it follows a logarithmic behavior. To validate our analytical solution, we perform numerical simulations. For long-range interactions, the theoretical calculations align closely with the numerical results. However, for short-range interactions, we observe that discreteness significantly impacts the continuum approximation used in the derivation, leading to incorrect asymptotic behavior in this regime. To address this issue, we propose an expansion that substantially improves the accuracy of the analytical expression. We discuss applications of the every-pair interactions system proposed, and one of them is to explore a framework for estimating the fractal dimension of unknown structures. This approach offers an alternative to established methods such as box-counting or sandbox methods. Overall, we believe that our analytical work will have broad applicability in systems where every-pair interactions play a role.

Suggested Citation

  • Ribeiro, Fabiano L. & Li, Yunfei & Born, Stefan & Rybski, Diego, 2024. "Analytical solution for the long- and short-range every-pair-interactions system," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924003230
    DOI: 10.1016/j.chaos.2024.114771
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924003230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouchet, Freddy & Gupta, Shamik & Mukamel, David, 2010. "Thermodynamics and dynamics of systems with long-range interactions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(20), pages 4389-4405.
    2. Kingsley E. Haynes & A. Stewart Fotheringham, 1985. "Gravity and Spatial Interaction Models," Book Chapters, in: Grant I. Thrall (ed.),Scientific Geography, pages 48, Regional Research Institute, West Virginia University.
    3. Kingsley E. Haynes & A. Stewart Fotheringham, 1985. "Gravity and Spatial Interaction Models," Wholbk, Regional Research Institute, West Virginia University, number 07 edited by Grant I. Thrall, Fall.
    4. Yunfei Li & Sebastian Schubert & Jürgen P. Kropp & Diego Rybski, 2020. "On the influence of density and morphology on the Urban Heat Island intensity," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    6. Trakhtenbrot, A. & Katul, G.G. & Nathan, R., 2014. "Mechanistic modeling of seed dispersal by wind over hilly terrain," Ecological Modelling, Elsevier, vol. 274(C), pages 29-40.
    7. Cabella, Brenno Caetano Troca & Ribeiro, Fabiano & Martinez, Alexandre Souto, 2012. "Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1281-1286.
    8. d’Onofrio, Alberto, 2009. "Fractal growth of tumors and other cellular populations: Linking the mechanistic to the phenomenological modeling and vice versa," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 875-880.
    9. José Miguel Barrios & Willem W. Verstraeten & Piet Maes & Jean-Marie Aerts & Jamshid Farifteh & Pol Coppin, 2012. "Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases," IJERPH, MDPI, vol. 9(12), pages 1-19, November.
    10. Jose Lobo & Luis MA Bettencourt & Michael E Smith & Scott Ortman, 2020. "Settlement scaling theory: Bridging the study of ancient and contemporary urban systems," Urban Studies, Urban Studies Journal Limited, vol. 57(4), pages 731-747, March.
    11. Edward L. Glaeser & Joshua D. Gottlieb, 2009. "The Wealth of Cities: Agglomeration Economies and Spatial Equilibrium in the United States," Journal of Economic Literature, American Economic Association, vol. 47(4), pages 983-1028, December.
    12. Kühnert, Christian & Helbing, Dirk & West, Geoffrey B., 2006. "Scaling laws in urban supply networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 96-103.
    13. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    14. repec:brs:ecchap:07 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inna Čábelková & Luboš Smutka & Svitlana Rotterova & Olesya Zhytna & Vít Kluger & David Mareš, 2022. "The Sustainability of International Trade: The Impact of Ongoing Military Conflicts, Infrastructure, Common Language, and Economic Wellbeing in Post-Soviet Region," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    2. Li, Lei & Al Chami, Zaher & Manier, Hervé & Manier, Marie-Ange & Xue, Jian, 2021. "Incorporating fuel delivery in network design for hydrogen fueling stations: Formulation and two metaheuristic approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    3. David Guerrero & Jean-Claude Thill, 2023. "Port competition in contestable hinterlands: The case of preferential relationships and barrier effects in Central Europe," Post-Print hal-04166277, HAL.
    4. Jung-Hun Yang & Kwang-Woo Nam, 2022. "Modelling the Relationship of Infrastructure and Externalities Using Urban Scaling," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    5. Šveda, Martin & Madajová, Michala Sládeková, 2023. "Estimating distance decay of intra-urban trips using mobile phone data: The case of Bratislava, Slovakia," Journal of Transport Geography, Elsevier, vol. 107(C).
    6. Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Chen, Yan & Song, Dongdong & Zhi, Danyue & Wang, Yiyun & Gao, Ziyou, 2023. "Estimating intercity heavy truck mobility flows using the deep gravity framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    7. Mark J Holmes & Jesús Otero & Theodore Panagiotidis, 2018. "Climbing the property ladder: An analysis of market integration in London property prices," Urban Studies, Urban Studies Journal Limited, vol. 55(12), pages 2660-2681, September.
    8. Andrés Rodríguez-Pose & Michael Storper, 2020. "Housing, urban growth and inequalities: The limits to deregulation and upzoning in reducing economic and spatial inequality," Urban Studies, Urban Studies Journal Limited, vol. 57(2), pages 223-248, February.
    9. Chen, Haiqiang & Lin, Zhe, 2024. "Local fiscal pressure and shadow banking activities of nonfinancial enterprises–A story of government intervention," Finance Research Letters, Elsevier, vol. 62(PB).
    10. Elliott, Robert J.R. & Sun, Puyang & Xu, Qiqin, 2015. "Energy distribution and economic growth: An empirical test for China," Energy Economics, Elsevier, vol. 48(C), pages 24-31.
    11. Wang, Xu & Zhang, Xiaobo & Xie, Zhuan & Huang, Yiping, 2016. "Roads to innovation: Firm-level evidence from China:," IFPRI discussion papers 1542, International Food Policy Research Institute (IFPRI).
    12. Marta Aloi & Joanna Poyago-Theotoky & Frédéric Tournemaine, 2022. "The Geography of Knowledge and R&D-led Growth [Real effects ofacademic research: comment]," Journal of Economic Geography, Oxford University Press, vol. 22(6), pages 1149-1190.
    13. Patricia Beeson & Lara Shore-Sheppard & Tara Watson, 2010. "Local Fiscal Policies and Urban Wage Structures," Public Finance Review, , vol. 38(5), pages 540-584, September.
    14. Patricia C Melo & Daniel J Graham & David Levinson & Sarah Aarabi, 2017. "Agglomeration, accessibility and productivity: Evidence for large metropolitan areas in the US," Urban Studies, Urban Studies Journal Limited, vol. 54(1), pages 179-195, January.
    15. Chen, Yanguang, 2014. "An allometric scaling relation based on logistic growth of cities," Chaos, Solitons & Fractals, Elsevier, vol. 65(C), pages 65-77.
    16. repec:bny:wpaper:0076 is not listed on IDEAS
    17. Nora Libertun de Duren & Roberto Guerrero Compeán, 2016. "Growing resources for growing cities: Density and the cost of municipal public services in Latin America," Urban Studies, Urban Studies Journal Limited, vol. 53(14), pages 3082-3107, November.
    18. Wietzke, Frank-Borge, 2015. "Long-Term Consequences of Colonial Institutions and Human Capital Investments: Sub-National Evidence from Madagascar," World Development, Elsevier, vol. 66(C), pages 293-307.
    19. Boris Hirsch & Elke J. Jahn & Alan Manning & Michael Oberfichtner, 2022. "The Urban Wage Premium in Imperfect Labor Markets," Journal of Human Resources, University of Wisconsin Press, vol. 57(S), pages 111-136.
    20. Lee, Sanghoon & Li, Qiang, 2013. "Uneven landscapes and city size distributions," Journal of Urban Economics, Elsevier, vol. 78(C), pages 19-29.
    21. Ioulia Ossokina & Coen Teulings & Henri de Groot, 2014. "Welfare Benefits of Agglomeration and Worker Heterogeneity," CPB Discussion Paper 289, CPB Netherlands Bureau for Economic Policy Analysis.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924003230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.