IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923008639.html
   My bibliography  Save this article

Design and analysis of a galloping energy harvester with V-shape spring structure under Gaussian white noise

Author

Listed:
  • Deng, Hang
  • Ye, Jimin
  • Huang, Dongmei

Abstract

This paper presents the design of an innovative galloping energy harvester (GEH) that incorporates an elastic structure to reconstructed the traditional GEH. The mathematical model of the GEH is derived based on the Euler–Bernoulli beam theory and Kirchhoff’s law. Due to the nonlinear properties of the model, the partial linearization technique and Fokker–Planck–Kolmogorov equation are used to further explore the joint probability density function (PDF) and the stationary PDF of displacement and velocity. Subsequently, Monte Carlo simulation is used to illustrate the behavior of the theoretical results. The simulation results show that, under different conditions, the stationary PDF exhibits double-peak or single-peak shape, which is caused by the compression or elongation state. Meanwhile, higher wind speeds correspond to larger displacement amplitudes. Then, the stationary PDF of displacement amplitude is obtained using the stochastic average method, and the expressions for mean square voltage and mean output power are derived. Numerical results indicate that when the wind speed is below the critical wind speed for galloping phenomenon, the vibration of the GEH is mainly driven by noise. When the wind speed exceeds the critical wind speed, the GEH is mainly affected by the wind speed. Higher wind speeds correspond to higher mean output power. An optimal electromechanical coupling coefficient and the ratio of the mechanical and electrical can be derived based on the GEH parameters when galloping occurs.

Suggested Citation

  • Deng, Hang & Ye, Jimin & Huang, Dongmei, 2023. "Design and analysis of a galloping energy harvester with V-shape spring structure under Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008639
    DOI: 10.1016/j.chaos.2023.113962
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113962?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong-Ge Yang & Ya-Hui Sun & Wei Xu, 2019. "Stochastic Bifurcations of a Fractional-Order Vibro-Impact System Driven by Additive and Multiplicative Gaussian White Noises," Complexity, Hindawi, vol. 2019, pages 1-10, October.
    2. Guo, Shu-Ling & Yang, Yong-Ge & Sun, Ya-Hui, 2021. "Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Yang, Tao & Liu, Jiye & Cao, Qingjie, 2018. "Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 358-373.
    4. Zhou, Biliu & Jin, Yanfei & Xu, Huidong, 2022. "Global dynamics for a class of tristable system with negative stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    5. Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    6. Shaikh, Faisal Karim & Zeadally, Sherali, 2016. "Energy harvesting in wireless sensor networks: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1041-1054.
    7. Liu, Di & Xu, Yong & Li, Junlin, 2017. "Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 806-812.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Shu-Ling & Yang, Yong-Ge & Sun, Ya-Hui, 2021. "Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    3. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    4. Farnaz Derakhshan & Shamim Yousefi, 2019. "A review on the applications of multiagent systems in wireless sensor networks," International Journal of Distributed Sensor Networks, , vol. 15(5), pages 15501477198, May.
    5. Siewe, M. Siewe & Kenfack, W. Fokou & Kofane, T.C., 2019. "Probabilistic response of an electromagnetic transducer with nonlinear magnetic coupling under bounded noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 124(C), pages 26-35.
    6. Zhou, Biliu & Jin, Yanfei & Xu, Huidong, 2022. "Global dynamics for a class of tristable system with negative stiffness," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    9. Liu, Qi & Qin, Weiyang & Zhou, Zhiyong & Shang, Mengjie & Zhou, Honglei, 2023. "Harvesting low-speed wind energy by bistable snap-through and amplified inertial force," Energy, Elsevier, vol. 284(C).
    10. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    11. Khaje khabaz, Moahamad & Eftekhari, S. Ali & Hashemian, Mohamad & Toghraie, Davood, 2020. "Optimal vibration control of multi-layer micro-beams actuated by piezoelectric layer based on modified couple stress and surface stress elasticity theories," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 546(C).
    12. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    13. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    14. Liu, Feng-Rui & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester," Energy, Elsevier, vol. 183(C), pages 92-105.
    15. Sajib Roy & Md Humayun Kabir & Md Salauddin & Miah A. Halim, 2022. "An Electromagnetic Wind Energy Harvester Based on Rotational Magnet Pole-Pairs for Autonomous IoT Applications," Energies, MDPI, vol. 15(15), pages 1-14, August.
    16. Han, Ning & Zhang, Hanfang & Lu, Peipei & Liu, Zixuan, 2024. "Resonance response and chaotic analysis for an irrational pendulum system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    17. Sunil Kr. Jha & Egbe Michael Eyong, 2018. "An energy optimization in wireless sensor networks by using genetic algorithm," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(1), pages 113-121, January.
    18. Jiatong Chen & Bin Bao & Jinlong Liu & Yufei Wu & Quan Wang, 2022. "Pendulum Energy Harvesters: A Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    19. Sudhanshu Tiwari & Gaurav Kumar & Ayush Raj & Prateek & Rajeev Arya, 0. "Water cycle algorithm perspective on energy constraints in WSN," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-8.
    20. Qi, Nanjian & Yin, Yajiang & Dai, Keren & Wu, Chengjun & Wang, Xiaofeng & You, Zheng, 2021. "Comprehensive optimized hybrid energy storage system for long-life solar-powered wireless sensor network nodes," Applied Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.