IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i5p751-d759385.html
   My bibliography  Save this article

Parameter–Elliptic Fourier Multipliers Systems and Generation of Analytic and C ∞ Semigroups

Author

Listed:
  • Bienvenido Barraza Martínez

    (Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
    These authors contributed equally to this work.)

  • Jonathan González Ospino

    (Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
    These authors contributed equally to this work.)

  • Rogelio Grau Acuña

    (Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
    These authors contributed equally to this work.)

  • Jairo Hernández Monzón

    (Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla 081007, Colombia
    These authors contributed equally to this work.)

Abstract

We consider Fourier multiplier systems on R n with components belonging to the standard Hörmander class S 1 , 0 m R n , but with limited regularity. Using a notion of parameter-ellipticity with respect to a subsector Λ ⊂ C (introduced by Denk, Saal, and Seiler) we show the generation of both C ∞ semigroups and analytic semigroups (in a particular case) on the Sobolev spaces W p k R n , C q with k ∈ N 0 , 1 ≤ p < ∞ and q ∈ N . For the proofs, we modify and improve a crucial estimate from Denk, Saal and Seiler, on the inverse matrix of the symbol (see Lemma 2). As examples, we apply the theory to solve the heat equation, a linear thermoelastic plate equation, a structurally damped plate equation, and a generalized plate equation, all in the whole space, in the frame of Sobolev spaces.

Suggested Citation

  • Bienvenido Barraza Martínez & Jonathan González Ospino & Rogelio Grau Acuña & Jairo Hernández Monzón, 2022. "Parameter–Elliptic Fourier Multipliers Systems and Generation of Analytic and C ∞ Semigroups," Mathematics, MDPI, vol. 10(5), pages 1-19, February.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:751-:d:759385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/5/751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/5/751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Raja, M. Mohan & Vijayakumar, V. & Udhayakumar, R., 2020. "A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haq, Abdul, 2022. "Partial-approximate controllability of semi-linear systems involving two Riemann-Liouville fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Gautam, Pooja & Shukla, Anurag, 2023. "Stochastic controllability of semilinear fractional control differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    3. Mohan Raja, M. & Vijayakumar, V., 2022. "Existence results for Caputo fractional mixed Volterra-Fredholm-type integrodifferential inclusions of order r ∈ (1,2) with sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    4. Boudjerida, Assia & Seba, Djamila, 2021. "Approximate controllability of hybrid Hilfer fractional differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    5. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Shukla, Anurag & Nisar, Kottakkaran Sooppy, 2021. "A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r∈(1,2) with delay," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. Singh, Ajeet & Shukla, Anurag & Vijayakumar, V. & Udhayakumar, R., 2021. "Asymptotic stability of fractional order (1,2] stochastic delay differential equations in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    7. Shukla, Anurag & Vijayakumar, V. & Nisar, Kottakkaran Sooppy, 2022. "A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r∈(1,2)," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    8. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2021. "A note on the approximate controllability of Sobolev type fractional stochastic integro-differential delay inclusions with order 1," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1003-1026.
    9. Mei-Qi, Wang & Wen-Li, Ma & En-Li, Chen & Yu-Jian, Chang & Cui-Yan, Wang, 2022. "Principal resonance analysis of piecewise nonlinear oscillator with fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    10. Chen, Weihao & Liu, Yansheng & Zhao, Daliang, 2024. "Approximate controllability for a class of stochastic impulsive evolution system with infinite delay involving the fractional substantial derivative," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    11. Daliang Zhao, 2023. "Approximate Controllability for a Class of Semi-Linear Fractional Integro-Differential Impulsive Evolution Equations of Order 1 < α < 2 with Delay," Mathematics, MDPI, vol. 11(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:5:p:751-:d:759385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.