IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923006434.html
   My bibliography  Save this article

Almost surely synchronization of directed coupled neural networks via stochastic distributed delayed impulsive control

Author

Listed:
  • Dong, Shiyu
  • Shi, Kaibo
  • Wen, Shiping
  • Shen, Yuan
  • Zhong, Shouming

Abstract

This paper mainly focuses on studying the almost surely synchronization problem of directed coupled neural networks with time-varying delays. A new type of stochastic distributed impulsive controller is proposed to take impulse delays into account, where impulsive gains are assumed to obey the Gaussian distribution. By taking advantage of basic properties associated with graph theory, the Chebyshev inequality, the Borel–Cantelli Lemma and the Lyapunov functional method, some sufficient conditions for almost surely synchronization of delayed coupled impulsive neural networks with random impulsive gains are presented. Our result shows that, under the proposed stochastic impulsive control scheme, almost surely synchronization can be achieved even if the size of delays exceeds the length of impulsive intervals. Finally, two numerical examples are provided to verify the validity of the theoretical results.

Suggested Citation

  • Dong, Shiyu & Shi, Kaibo & Wen, Shiping & Shen, Yuan & Zhong, Shouming, 2023. "Almost surely synchronization of directed coupled neural networks via stochastic distributed delayed impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006434
    DOI: 10.1016/j.chaos.2023.113742
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923006434
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    2. Yi, Chengbo & Feng, Jianwen & Wang, Jingyi & Xu, Chen & Zhao, Yi, 2017. "Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 78-90.
    3. Li, Ping & Cao, Jinde & Wang, Zidong, 2007. "Robust impulsive synchronization of coupled delayed neural networks with uncertainties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 261-272.
    4. Ding, Dong & Tang, Ze & Wang, Yan & Ji, Zhicheng, 2020. "Synchronization of nonlinearly coupled complex networks: Distributed impulsive method," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of stochastic complex networks with discrete-time and distributed coupling delayed via hybrid nonlinear and impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 381-393.
    2. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of multi-stochastic-link complex networks via aperiodically intermittent control with two different switched periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 20-38.
    3. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Synchronization in complex delayed dynamical networks with impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 684-692.
    4. Zhou, Jin & Xiang, Lan & Liu, Zengrong, 2007. "Global synchronization in general complex delayed dynamical networks and its applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 385(2), pages 729-742.
    5. Zheng, Song & Yuan, Liguo, 2019. "Nonperiodically intermittent pinning synchronization of complex-valued complex networks with non-derivative and derivative coupling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 587-605.
    6. Xuan, Deli & Tang, Ze & Feng, Jianwen & Park, Ju H., 2021. "Cluster synchronization of nonlinearly coupled Lur’e networks: Delayed impulsive adaptive control protocols," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    8. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    9. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    10. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    11. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    12. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    13. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    14. Ma, Mihua & Zhou, Jin & Cai, Jianping, 2014. "Impulsive practical tracking synchronization of networked uncertain Lagrangian systems without and with time-delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 116-132.
    15. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    16. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    17. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    18. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    20. Dragicevic, Arnaud Z. & Sinclair-Desgagné, Bernard, 2013. "Sustainable network dynamics," Ecological Modelling, Elsevier, vol. 270(C), pages 43-53.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923006434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.