IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920308572.html
   My bibliography  Save this article

Quasi-synchronization of heterogenous fractional-order dynamical networks with time-varying delay via distributed impulsive control

Author

Listed:
  • Wang, Fei
  • Zheng, Zhaowen
  • Yang, Yongqing

Abstract

This paper investigates the quasi-synchronization problem of a heterogeneous dynamical network. All nodes have fractional order dynamical behavior with time-varying delay. The distributed impulsive control strategy is applied to drive all the nodes to approximately synchronize with the target orbit within a nonzero error bound. A new comparison principle of impulsive fractional order functional differential equation has been built at first. Then, based on the Lyapunov stability theory, some basic theories of fractional order functional differential equation, and the definition of an average impulsive interval, some quasi-synchronization criteria are derived with explicit expressions of the error bound. Both synchronizing impulses and desynchronizing impulses are discussed in this paper. Finally, two numerical examples are presented to illustrate the validity of the theoretical analysis.

Suggested Citation

  • Wang, Fei & Zheng, Zhaowen & Yang, Yongqing, 2021. "Quasi-synchronization of heterogenous fractional-order dynamical networks with time-varying delay via distributed impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308572
    DOI: 10.1016/j.chaos.2020.110465
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110465?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Fei & Yang, Yongqing, 2018. "Quasi-synchronization for fractional-order delayed dynamical networks with heterogeneous nodes," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 1-14.
    2. Yang, Huilan & Wang, Xin & Zhong, Shouming & Shu, Lan, 2018. "Synchronization of nonlinear complex dynamical systems via delayed impulsive distributed control," Applied Mathematics and Computation, Elsevier, vol. 320(C), pages 75-85.
    3. Li, Hong-Li & Hu, Cheng & Jiang, Yao-Lin & Wang, Zuolei & Teng, Zhidong, 2016. "Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 142-149.
    4. Chen, Boshan & Chen, Jiejie, 2015. "Razumikhin-type stability theorems for functional fractional-order differential systems and applications," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 63-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hongguang Fan & Yue Rao & Kaibo Shi & Hui Wen, 2023. "Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    2. Peng, Qiu & Jian, Jigui, 2023. "Asymptotic synchronization of second-fractional -order fuzzy neural networks with impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    3. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Global μ-synchronization for nonlinear complex networks with unbounded multiple time delays and uncertainties via impulsive control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    4. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    5. Du, Feifei & Lu, Jun-Guo, 2021. "New approach to finite-time stability for fractional-order BAM neural networks with discrete and distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Guo, Junfeng & Wang, Fei & Xue, Qianwen & Wang, Mengqing, 2023. "Cluster synchronization control for coupled genetic oscillator networks under denial-of-service attacks: Pinning partial impulsive strategy," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Yong Tang & Lang Zhou & Jiahui Tang & Yue Rao & Hongguang Fan & Jihong Zhu, 2023. "Hybrid Impulsive Pinning Control for Mean Square Synchronization of Uncertain Multi-Link Complex Networks with Stochastic Characteristics and Hybrid Delays," Mathematics, MDPI, vol. 11(7), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafiya, M. & Nagamani, G. & Dafik, D., 2022. "Global synchronization of uncertain fractional-order BAM neural networks with time delay via improved fractional-order integral inequality," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 168-186.
    2. Cai, Shuiming & Hou, Meiyuan, 2021. "Quasi-synchronization of fractional-order heterogeneous dynamical networks via aperiodic intermittent pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Wang, Fei & Yang, Yongqing, 2018. "Quasi-synchronization for fractional-order delayed dynamical networks with heterogeneous nodes," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 1-14.
    4. Xu, Liguang & Chu, Xiaoyan & Hu, Hongxiao, 2021. "Quasi-synchronization analysis for fractional-order delayed complex dynamical networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 594-613.
    5. Yao, Zichen & Yang, Zhanwen & Zhang, Yusong, 2021. "A stability criterion for fractional-order complex-valued differential equations with distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Guo, Beibei & Wu, Yinhu & Xiao, Yu & Zhang, Chiping, 2018. "Graph-theoretic approach to synchronizing stochastic coupled systems with time-varying delays on networks via periodically intermittent control," Applied Mathematics and Computation, Elsevier, vol. 331(C), pages 341-357.
    7. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2022. "Generalized Proportional Caputo Fractional Differential Equations with Delay and Practical Stability by the Razumikhin Method," Mathematics, MDPI, vol. 10(11), pages 1-15, May.
    8. Chu, Xiaoyan & Xu, Liguang & Hu, Hongxiao, 2020. "Exponential quasi-synchronization of conformable fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Yang, Zhanwen & Li, Qi & Yao, Zichen, 2023. "A stability analysis for multi-term fractional delay differential equations with higher order," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    10. Fei Wang & Zhaowen Zheng & Yongqing Yang, 2019. "Synchronization of Complex Dynamical Networks with Hybrid Time Delay under Event-Triggered Control: The Threshold Function Method," Complexity, Hindawi, vol. 2019, pages 1-17, December.
    11. Wang, Fei & Yang, Yongqing, 2018. "Intermittent synchronization of fractional order coupled nonlinear systems based on a new differential inequality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 142-152.
    12. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2021. "Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    13. Tan, Guoqiang & Wang, Zhanshan & Li, Cong, 2020. "H∞ performance state estimation of delayed static neural networks based on an improved proportional-integral estimator," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    14. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    15. Peng, Qiu & Jian, Jigui, 2023. "Asymptotic synchronization of second-fractional -order fuzzy neural networks with impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    16. Cui, Qian & Li, Lulu & Lu, Jianquan & Alofi, Abdulaziz, 2022. "Finite-time synchronization of complex dynamical networks under delayed impulsive effects," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    17. Zhou, Weigang & Huang, Chengdai & Xiao, Min & Cao, Jinde, 2019. "Hybrid tactics for bifurcation control in a fractional-order delayed predator–prey model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 183-191.
    18. Zheng, Bibo & Wang, Zhanshan, 2022. "Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    19. Gui-Lai Zhang & Chao Liu, 2024. "Two Schemes of Impulsive Runge–Kutta Methods for Linear Differential Equations with Delayed Impulses," Mathematics, MDPI, vol. 12(13), pages 1-17, July.
    20. Yi Liang & Yunyun Deng & Chuan Zhang, 2023. "Outer Synchronization of Two Muti-Layer Dynamical Complex Networks with Intermittent Pinning Control," Mathematics, MDPI, vol. 11(16), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.