IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v183y2024ics0960077924004673.html
   My bibliography  Save this article

Electronic implementation of simplicial complexes

Author

Listed:
  • Vera-Ávila, V.P.
  • Rivera-Durón, R.R.
  • Soriano-Garcia, Miguel S.
  • Sevilla-Escoboza, R.
  • Buldú, Javier M.

Abstract

We design an experimental implementation of a simplicial complex, a complex network structure with higher-order interactions between nodes. Using a set of three Rössler-like (analog) electronic circuits under a chaotic dynamical regime, we demonstrate how the synchronization basin is enhanced by introducing higher-order interactions between the triplet of nodes, as suggested in recent theoretical works. The experiments prove that, when the coupling is introduced through the adequate variable, the synchronization area is increased. The combination of pairwise (i.e., node-to-node) with high-order (i.e., triplet) coupling is analyzed by modifying the corresponding coupling strengths, σ1 and σ2. Importantly, we detail the procedure for reproducing the experimental setup and provide all datasets generated in the laboratory, in order to allow other researchers to further investigate the properties of complex networks with higher-order interactions.

Suggested Citation

  • Vera-Ávila, V.P. & Rivera-Durón, R.R. & Soriano-Garcia, Miguel S. & Sevilla-Escoboza, R. & Buldú, Javier M., 2024. "Electronic implementation of simplicial complexes," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
  • Handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004673
    DOI: 10.1016/j.chaos.2024.114915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924004673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. V. Gambuzza & F. Patti & L. Gallo & S. Lepri & M. Romance & R. Criado & M. Frasca & V. Latora & S. Boccaletti, 2021. "Stability of synchronization in simplicial complexes," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Iacopo Iacopini & Giovanni Petri & Alain Barrat & Vito Latora, 2019. "Simplicial models of social contagion," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    3. Vera-Ávila, V.P. & Sevilla-Escoboza, J.R. & Durón, R.R. Rivera & Buldú, J.M., 2021. "Dynamical consistency in networks of nonlinear oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Barabási, A.L & Jeong, H & Néda, Z & Ravasz, E & Schubert, A & Vicsek, T, 2002. "Evolution of the social network of scientific collaborations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 311(3), pages 590-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Gallo & Lucas Lacasa & Vito Latora & Federico Battiston, 2024. "Higher-order correlations reveal complex memory in temporal hypergraphs," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    2. Krishnagopal, Sanjukta & Bianconi, Ginestra, 2023. "Topology and dynamics of higher-order multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    3. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    4. Muolo, Riccardo & Gallo, Luca & Latora, Vito & Frasca, Mattia & Carletti, Timoteo, 2023. "Turing patterns in systems with high-order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    5. Martina Contisciani & Federico Battiston & Caterina De Bacco, 2022. "Inference of hyperedges and overlapping communities in hypergraphs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Federico Malizia & Alessandra Corso & Lucia Valentina Gambuzza & Giovanni Russo & Vito Latora & Mattia Frasca, 2024. "Reconstructing higher-order interactions in coupled dynamical systems," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Ramasamy, Mohanasubha & Devarajan, Subhasri & Kumarasamy, Suresh & Rajagopal, Karthikeyan, 2022. "Effect of higher-order interactions on synchronization of neuron models with electromagnetic induction," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    8. Yuanzhao Zhang & Maxime Lucas & Federico Battiston, 2023. "Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Li, Xing & He, Runzi & Xi, Yuxia & Xue, Yakui & Wang, Yunfei & Luo, Xiaofeng, 2024. "The increasing strength of higher-order interactions may homogenize the distribution of infections in Turing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    10. Brökel, Heike & Broekel, Tom, 2023. "Collaboration and SDG-related research at the University of Stavanger," MPRA Paper 120005, University Library of Munich, Germany.
    11. Jacob Wood & Gohar Feroz Khan, 2015. "International trade negotiation analysis: network and semantic knowledge infrastructure," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 537-556, October.
    12. Marian-Gabriel Hâncean & Matjaž Perc & Lazăr Vlăsceanu, 2014. "Fragmented Romanian Sociology: Growth and Structure of the Collaboration Network," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-9, November.
    13. Jianlin Zhou & An Zeng & Ying Fan & Zengru Di, 2018. "Identifying important scholars via directed scientific collaboration networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1327-1343, March.
    14. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    15. Marian-Gabriel Hâncean & Matjaž Perc & Jürgen Lerner, 2021. "The coauthorship networks of the most productive European researchers," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 201-224, January.
    16. Holger Graf, 2013. "Inventor Networks in Emerging Key Technologies: Information Technology vs. Semiconductors," Economic Complexity and Evolution, in: Guido Buenstorf & Uwe Cantner & Horst Hanusch & Michael Hutter & Hans-Walter Lorenz & Fritz Rahmeyer (ed.), The Two Sides of Innovation, edition 127, pages 55-76, Springer.
    17. Duk Hee Lee & Il Won Seo & Ho Chull Choe & Hee Dae Kim, 2012. "Collaboration network patterns and research performance: the case of Korean public research institutions," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(3), pages 925-942, June.
    18. Gianna Giudicati & Massimo Riccaboni & Anna Romiti, 2013. "Experience, socialization and customer retention: Lessons from the dance floor," Marketing Letters, Springer, vol. 24(4), pages 409-422, December.
    19. Letina, Srebrenka, 2016. "Network and actor attribute effects on the performance of researchers in two fields of social science in a small peripheral community," Journal of Informetrics, Elsevier, vol. 10(2), pages 571-595.
    20. Türker, İlker & Çavuşoğlu, Abdullah, 2016. "Detailing the co-authorship networks in degree coupling, edge weight and academic age perspective," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 386-392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:183:y:2024:i:c:s0960077924004673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.