IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i15p3373-d1208616.html
   My bibliography  Save this article

Multiple-Image Encryption Scheme Based on an N-Dimensional Chaotic Modular Model and Overlapping Block Permutation–Diffusion Using Newly Defined Operation

Author

Listed:
  • Ziqi Zhou

    (School of Physics and Electronics, Central South University, Changsha 410083, China)

  • Xuemei Xu

    (School of Physics and Electronics, Central South University, Changsha 410083, China)

  • Zhaohui Jiang

    (School of Automation, Central South University, Changsha 410083, China)

  • Kehui Sun

    (School of Physics and Electronics, Central South University, Changsha 410083, China)

Abstract

Some existing chaotic maps have the drawbacks of a narrow range of chaotic parameters and discontinuities, which may be inherited by new chaotic systems generated from them as seed maps. We propose a chaotic model that can generate N-dimensional chaotic systems to overcome the problem. By fixing the original parameters of the seed map in the chaotic range, we then introduce new parameters and use modular operations to widen the range of the parameters and increase the complexity. Simulation results show that the generated chaotic system has good chaotic dynamics. Based on this chaotic model, we propose a multiple-image encryption algorithm that is not limited by image type, number, and size. The resistance to plaintext attacks is enhanced by a permutation–diffusion algorithm based on overlapping blocks. We design a newly defined lookup table operation based on Latin squares with enhanced nonlinearity and randomness. By adjusting the overlapping block parameters and the number of Latin squares, users can design different encryption levels to balance encryption efficiency and encryption effectiveness. The experimental results show that the proposed image encryption algorithm can effectively encrypt multiple images, and all the evaluation indexes reach the expected value.

Suggested Citation

  • Ziqi Zhou & Xuemei Xu & Zhaohui Jiang & Kehui Sun, 2023. "Multiple-Image Encryption Scheme Based on an N-Dimensional Chaotic Modular Model and Overlapping Block Permutation–Diffusion Using Newly Defined Operation," Mathematics, MDPI, vol. 11(15), pages 1-27, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3373-:d:1208616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/15/3373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/15/3373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Krishna & Roy, Satyabrata & Rawat, Umashankar & Malhotra, Shashwat, 2022. "IEHC: An efficient image encryption technique using hybrid chaotic map," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    2. Shenli Zhu & Xiaoheng Deng & Wendong Zhang & Congxu Zhu, 2023. "Image Encryption Scheme Based on Newly Designed Chaotic Map and Parallel DNA Coding," Mathematics, MDPI, vol. 11(1), pages 1-22, January.
    3. Chang, Liang & Lu, Jun-An & Deng, Xiaoming, 2005. "A new two-dimensional discrete chaotic system with rational fraction and its tracking and synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1135-1143.
    4. Chunyuan Liu & Qun Ding, 2020. "A Color Image Encryption Scheme Based on a Novel 3D Chaotic Mapping," Complexity, Hindawi, vol. 2020, pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinghong Cao & Linlin Tan & Xianying Xu & Bo Li, 2024. "A Universal Image Compression Sensing–Encryption Algorithm Based on DNA-Triploid Mutation," Mathematics, MDPI, vol. 12(13), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengyao Li & Xianwen Fang & Asimeng Ernest, 2023. "A Color Image Encryption Method Based on Dynamic Selection Chaotic System and Singular Value Decomposition," Mathematics, MDPI, vol. 11(15), pages 1-27, July.
    2. Wu, Xin & Shi, Hang & Ji’e, Musha & Duan, Shukai & Wang, Lidan, 2023. "A novel image compression and encryption scheme based on conservative chaotic system and DNA method," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Hemalatha Mahalingam & Padmapriya Velupillai Meikandan & Karuppuswamy Thenmozhi & Kawthar Mostafa Moria & Chandrasekaran Lakshmi & Nithya Chidambaram & Rengarajan Amirtharajan, 2023. "Neural Attractor-Based Adaptive Key Generator with DNA-Coded Security and Privacy Framework for Multimedia Data in Cloud Environments," Mathematics, MDPI, vol. 11(8), pages 1-23, April.
    4. Xiaoqiang Zhang & Mi Liu & Xiaochang Yang, 2023. "Color Image Encryption Algorithm Based on Cross-Spiral Transformation and Zone Diffusion," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    5. Haider, Muhammad Imran & Shah, Tariq & Ali, Asif & Shah, Dawood & Khalid, Ijaz, 2023. "An Innovative approach towards image encryption by using novel PRNs and S-boxes Modeling techniques," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 153-168.
    6. Tuli, Rohan & Soneji, Hitesh Narayan & Churi, Prathamesh, 2022. "PixAdapt: A novel approach to adaptive image encryption," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    7. Sabe, Naval R. & Pakhare, Sumit S. & Gade, Prashant M., 2024. "Synchronization transitions in coupled q-deformed logistic maps," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    8. Ye, Guodong & Wu, Huishan & Liu, Min & Huang, Xiaoling, 2023. "Reversible image-hiding algorithm based on singular value sampling and compressive sensing," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    9. Ernesto Moya-Albor & Andrés Romero-Arellano & Jorge Brieva & Sandra L. Gomez-Coronel, 2023. "Color Image Encryption Algorithm Based on a Chaotic Model Using the Modular Discrete Derivative and Langton’s Ant," Mathematics, MDPI, vol. 11(10), pages 1-35, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:15:p:3373-:d:1208616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.