IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v159y2022ics0960077922003368.html
   My bibliography  Save this article

Birhythmic oscillations and global stability analysis of a conductance-based neuronal model under ion channel fluctuations

Author

Listed:
  • I.B., Tagne nkounga
  • F.M., Moukam kakmeni
  • R., Yamapi

Abstract

By drawing inspiration from existing polynomial models for neurons, we make use of the Moris Lecar system to derive a new two dimensional birhythmic conductance-based neuronal model for nerves. The analysis of fixed points and their stability indicates that its dynamics strongly depends on the parameters of the newly nonlinear terms introduced. Using Lindsted's method, it is observed that the neuronal system can exhibit coexistence of attractors. These coexisting attractors are on the one hand the subthreshold oscillation and on the other hand the spike generation well known in neuronal systems. After introducing the effects of the channel fluctuations in the form of a Gaussian white noise, the global stability of the attractors is analyzed. The effective active energy barrier also called threshold potential is obtained. This threshold potential is the one needed by neuron to switch from one attractor to another. The probability distribution is also studied analytically and numerically, using the Fokker–Planck type equation derived from the new model and the Monte Carlo methods. It is observed that the system physiological parameters and the intensity of the noise plays an important role in the probability of neuron to switch from the subthreshold attractor to the spiking one and vice versa.

Suggested Citation

  • I.B., Tagne nkounga & F.M., Moukam kakmeni & R., Yamapi, 2022. "Birhythmic oscillations and global stability analysis of a conductance-based neuronal model under ion channel fluctuations," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003368
    DOI: 10.1016/j.chaos.2022.112126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922003368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    2. Antti Saarinen & Marja-Leena Linne & Olli Yli-Harja, 2008. "Stochastic Differential Equation Model for Cerebellar Granule Cell Excitability," PLOS Computational Biology, Public Library of Science, vol. 4(2), pages 1-11, February.
    3. Joshua H Goldwyn & Eric Shea-Brown, 2011. "The What and Where of Adding Channel Noise to the Hodgkin-Huxley Equations," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-9, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Quan & Wang, Yiteng & Chen, Bei & Li, Ze & Wang, Ning, 2023. "Firing pattern in a memristive Hodgkin–Huxley circuit: Numerical simulation and analog circuit validation," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Nkounga, I.B. Tagne & Xia, Yibo & Yanchuk, Serhiy & Yamapi, R. & Kurths, Jürgen, 2023. "Generalized FitzHugh–Nagumo model with tristable dynamics: Deterministic and stochastic bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuckwell, Henry C. & Jost, Jürgen, 2012. "Analysis of inverse stochastic resonance and the long-term firing of Hodgkin–Huxley neurons with Gaussian white noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5311-5325.
    2. Nkounga, I.B. Tagne & Xia, Yibo & Yanchuk, Serhiy & Yamapi, R. & Kurths, Jürgen, 2023. "Generalized FitzHugh–Nagumo model with tristable dynamics: Deterministic and stochastic bifurcations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    4. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    5. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    6. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    7. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    8. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    9. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    10. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    12. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    13. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    14. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    15. Janssen, Marco A. & Anderies, John M. & Walker, Brian H., 2004. "Robust strategies for managing rangelands with multiple stable attractors," Journal of Environmental Economics and Management, Elsevier, vol. 47(1), pages 140-162, January.
    16. Admiraal, Jeroen F. & Wossink, Ada & de Groot, Wouter T. & de Snoo, Geert R., 2013. "More than total economic value: How to combine economic valuation of biodiversity with ecological resilience," Ecological Economics, Elsevier, vol. 89(C), pages 115-122.
    17. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    18. Tomczak, M.T. & Niiranen, S. & Hjerne, O. & Blenckner, T., 2012. "Ecosystem flow dynamics in the Baltic Proper—Using a multi-trophic dataset as a basis for food–web modelling," Ecological Modelling, Elsevier, vol. 230(C), pages 123-147.
    19. Florian Wagener, 2013. "Shallow lake economics run deep: nonlinear aspects of an economic-ecological interest conflict," Computational Management Science, Springer, vol. 10(4), pages 423-450, December.
    20. Bashkirtseva, Irina & Ryashko, Lev, 2017. "How environmental noise can contract and destroy a persistence zone in population models with Allee effect," Theoretical Population Biology, Elsevier, vol. 115(C), pages 61-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.