IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v158y2022ics0960077922002351.html
   My bibliography  Save this article

Optimization of stimulation waveforms for regulating spike-wave discharges in a thalamocortical model

Author

Listed:
  • Yan, Luyao
  • Zhang, Honghui
  • Sun, Zhongkui
  • Liu, Shuang
  • Liu, Yuanyuan
  • Xiao, Pengcheng

Abstract

Based on our modified thalamocortical model considering excitatory interneuron, this study incorporates deep brain stimulation (DBS) applied to pyramidal cluster and focuses on optimizing stimulus waveforms of DBS. The epileptic activities can be reproduced and modulated by inhibitory and excitatory interneurons, which are closely related to the generation of absence seizures. Under the bifurcation mechanism analysis, fold limit cycle and Hopf bifurcations well explain the termination and transition of various discharge states. To offer a potential way to improve control effects and energy savings, we investigate a range of waveforms covering rectangular, linear increase and decrease, triangular, exponential increase and decrease, Gaussian and sinusoidal pulse in detail. These single pulses all can effectively remove spike-wave discharges (SWD) with appropriate stimulus parameters, except for exponential decrease pulse. Additionally, stimulation outcomes are uncovered by adjusting stimulus timing and pulse width, and the optimal pulse width of each waveform has been suggested. By comprehensively analyzing the control rate, charge injected ability and energy requirement, the sinusoidal pulse achieves a better impact on eliminating SWD. From the perspective of rectangular and sinusoidal stimulations, the single pulse is of great advantage comparing to the traditional DBS, which may give some enlightenment for the clinical treatment, especially extend the application of DBS in neurological disorders.

Suggested Citation

  • Yan, Luyao & Zhang, Honghui & Sun, Zhongkui & Liu, Shuang & Liu, Yuanyuan & Xiao, Pengcheng, 2022. "Optimization of stimulation waveforms for regulating spike-wave discharges in a thalamocortical model," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002351
    DOI: 10.1016/j.chaos.2022.112025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922002351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hyun-Jae Pi & Balázs Hangya & Duda Kvitsiani & Joshua I. Sanders & Z. Josh Huang & Adam Kepecs, 2013. "Cortical interneurons that specialize in disinhibitory control," Nature, Nature, vol. 503(7477), pages 521-524, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tristan G. Heintz & Antonio J. Hinojosa & Sina E. Dominiak & Leon Lagnado, 2022. "Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. XiaoYuan Li & XiaoLi Yang & ZhongKui Sun, 2020. "Alpha rhythm slowing in a modified thalamo-cortico-thalamic model related with Alzheimer’s disease," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-22, March.
    3. Mohamad Motaharinia & Kim Gerrow & Roobina Boghozian & Emily White & Sun-Eui Choi & Kerry R. Delaney & Craig E. Brown, 2021. "Longitudinal functional imaging of VIP interneurons reveals sup-population specific effects of stroke that are rescued with chemogenetic therapy," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Robert Legenstein & Wolfgang Maass, 2014. "Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-27, October.
    5. Zhihui Wang & Manhong Xie, 2023. "Kinetic analysis of spike and wave discharge in a neural mass model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(7), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.