IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics0960077922002053.html
   My bibliography  Save this article

Transformation of multipole and vortex solitons in the nonlocal nonlinear fractional Schrödinger equation by means of Lévy-index management

Author

Listed:
  • Wang, Qing
  • Zhang, Lingling
  • Malomed, Boris A.
  • Mihalache, Dumitru
  • Zeng, Liangwei

Abstract

The structure and stability of multipole and vortex solitons in the nonlocal nonlinear fractional Schrödinger equation with a gradually decreasing Lévy index, α, are numerically studied. It is found that the solitons adiabatically compress with the decrease of Lévy index, and new species of stable ones are produced by means of this technique. It is known that, under the action of the normal diffraction (α = 2), the nonlocal cubic self-trapping can support, at most, quadrupole solitons and vortex ones with winding number m = 2 as stable modes in the one- and two-dimensional space, respectively. In contrast to that, we find that the application of the Lévy index management (the gradual decrease of α) leads to the formation of stable five-poles and sextupoles in one-dimensional, and vortices with m = 3 in two-dimensional. Weak dissipation does not essentially affect the observed results.

Suggested Citation

  • Wang, Qing & Zhang, Lingling & Malomed, Boris A. & Mihalache, Dumitru & Zeng, Liangwei, 2022. "Transformation of multipole and vortex solitons in the nonlocal nonlinear fractional Schrödinger equation by means of Lévy-index management," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922002053
    DOI: 10.1016/j.chaos.2022.111995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922002053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Pengfei & Malomed, Boris A. & Mihalache, Dumitru, 2020. "Vortex solitons in fractional nonlinear Schrödinger equation with the cubic-quintic nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rabie, Wafaa B. & Ahmed, Hamdy M., 2022. "Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov's sextic power law using extended F-expansion method," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Li, Jun-Jie & Zhang, Hui-Cong, 2023. "Stability and adaptive evolution of higher-order vector vortex solitons in thermally nonlinear media with tunable transverse size," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Xiaoqin & Bai, Juan & Malomed, Boris A. & Yang, Rongcao, 2024. "Spectrum conversion and pattern preservation of Airy beams in fractional systems with a dynamical harmonic-oscillator potential," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    2. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    3. Wang, Qing & Zhang, Lingling & Ke, Lin, 2022. "Parameters controlling of vortex solitons in nonlocal nonlinear medium with gradually characteristic length," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Zeng, Liangwei & Belić, Milivoj R. & Mihalache, Dumitru & Zhu, Xing, 2024. "Elliptical and rectangular solitons in media with competing cubic–quintic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Zeng, Liangwei & Mihalache, Dumitru & Malomed, Boris A. & Lu, Xiaowei & Cai, Yi & Zhu, Qifan & Li, Jingzhen, 2021. "Families of fundamental and multipole solitons in a cubic-quintic nonlinear lattice in fractional dimension," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. He, Shangling & Malomed, Boris A. & Mihalache, Dumitru & Peng, Xi & Yu, Xing & He, Yingji & Deng, Dongmei, 2021. "Propagation dynamics of abruptly autofocusing circular Airy Gaussian vortex beams in the fractional Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Li, S.R. & Bao, Y.Y. & Liu, Y.H. & Xu, T.F., 2022. "Bright solitons in fractional coupler with spatially periodical modulated nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    8. Zeng, Liangwei & Zeng, Jianhua, 2020. "Fractional quantum couplers," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    9. Dong, Liangwei & Du, Zhijing & Ren, Zhijun, 2023. "Fractional angular momentum borne on rotating vortex solitons," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    10. Su, Weiwei & Deng, Hanying & Dong, Liangwei & Huang, Zhenfen & Huang, Changming, 2020. "Stabilization of fundamental solitons in the nonlinear fractional Schrödinger equation with PT-symmetric nonlinear lattices," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. dos Santos, Mateus C.P., 2024. "Orthogonal multi-peak solitons from the coupled fractional nonlinear Schrödinger equation," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    12. Zeng, Liangwei & Belić, Milivoj R. & Mihalache, Dumitru & Wang, Qing & Chen, Junbo & Shi, Jincheng & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2021. "Solitons in spin-orbit-coupled systems with fractional spatial derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Kudryashov, Nikolay A., 2020. "Optical solitons of model with integrable equation for wave packet envelope," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    14. Zeng, Liangwei & Zhu, Yongle & Malomed, Boris A. & Mihalache, Dumitru & Wang, Qing & Long, Hu & Cai, Yi & Lu, Xiaowei & Li, Jingzhen, 2022. "Quadratic fractional solitons," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922002053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.