IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics0960077922001382.html
   My bibliography  Save this article

A new complexity measure: Modified discrete generalized past entropy based on grain exponent

Author

Listed:
  • Li, Sange
  • Shang, Pengjian

Abstract

In this paper, we propose the modified discrete generalized past entropy based on grain exponent (GE-MDGPE), to analyze complex dynamical systems. Gao et al. proposed discrete generalized past entropy based on oscillation-based grain exponent (O-DGPE) method in 2019, which has been proved to be a good measure of uncertainty of time series. Whereas, it still has some drawbacks, such as the effectiveness of O-DGPE is not good when characterizing some special systems. In order to solve these drawbacks, we therefore generalize O-DGPE method to put forward GE-MDGPE which can better characterize complex systems. While using two artificial model (logistic map, Hénon map) to qualify the proposed method, we find that the method can characterize the system more accurately than O-DPGE, and can distinguish the periodic system and chaotic system effectively and sensitively. Moreover, we discuss the influence of parameters β and j on the proposed method. At last, we apply the proposed method to analyze the financial series which are extracting from six indices: three U.S. stock indices and three Chinese stock indices. The results show that the method can clearly distinguish the stock markets of different levels of development, and the U.S. market and the Hong Kong market are more mature than the Chinese mainland market.

Suggested Citation

  • Li, Sange & Shang, Pengjian, 2022. "A new complexity measure: Modified discrete generalized past entropy based on grain exponent," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001382
    DOI: 10.1016/j.chaos.2022.111928
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922001382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Sange & Shang, Pengjian, 2021. "Analysis of nonlinear time series using discrete generalized past entropy based on amplitude difference distribution of horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Mao, Xuegeng & Shang, Pengjian & Xu, Meng & Peng, Chung-Kang, 2020. "Measuring time series based on multiscale dispersion Lempel–Ziv complexity and dispersion entropy plane," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    3. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Qin, Guyue & Shang, Pengjian, 2021. "Analysis of time series using a new entropy plane based on past entropy," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. Alberto Conejero & Andrei Velichko & Òscar Garibo-i-Orts & Yuriy Izotov & Viet-Thanh Pham, 2024. "Exploring the Entropy-Based Classification of Time Series Using Visibility Graphs from Chaotic Maps," Mathematics, MDPI, vol. 12(7), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fang & Wang, Lin & Chen, Yuming, 2022. "Multi-affine visible height correlation analysis for revealing rich structures of fractal time series," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Li, Yuxing & Wu, Junxian & Yi, Yingmin & Gu, Yunpeng, 2023. "Unequal-step multiscale integrated mapping dispersion Lempel-Ziv complexity: A novel complexity metric for signal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Wan, Li & Ling, Guang & Guan, Zhi-Hong & Fan, Qingju & Tong, Yu-Han, 2022. "Fractional multiscale phase permutation entropy for quantifying the complexity of nonlinear time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    4. Bai, Shiwei & Niu, Min, 2022. "The visibility graph of n-bonacci sequence," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    5. Gu, Danlei & Lin, Aijing & Lin, Guancen, 2022. "Sleep and cardiac signal processing using improved multivariate partial compensated transfer entropy based on non-uniform embedding," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    6. Hu, Xiaohua & Niu, Min, 2023. "Horizontal visibility graphs mapped from multifractal trinomial measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    7. Ren, Weikai & Jin, Zhijun, 2023. "Phase space visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    8. Campos, Michel W.S. & Ayres, Florindo A.C. & de Bessa, Iury Valente & de Medeiros, Renan L.P. & Martins, Paulo R.O. & Lenzi, Ervin kaminski & Filho, João E.C. & Vilchez, José R.S. & Lucena, Vicente F., 2024. "Fractional-order identification system based on Sundaresan’s technique," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    9. Li, Yuxing & Geng, Bo & Jiao, Shangbin, 2022. "Dispersion entropy-based Lempel-Ziv complexity: A new metric for signal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Lin, Guancen & Lin, Aijing, 2022. "Modified multiscale sample entropy and cross-sample entropy based on horizontal visibility graph," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    11. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).
    12. Chafi, Mohammadreza Shafiee & Narm, Hossein Gholizade & Kalat, Ali Akbarzadeh, 2023. "Chaotic and stochastic evaluation in Fluxgate magnetic sensors," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    13. Xie, Bing & Ge, Fudong, 2023. "Parameters and order identification of fractional-order epidemiological systems by Lévy-PSO and its application for the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    14. Gao, Meng & Ge, Ruijun, 2024. "Mapping time series into signed networks via horizontal visibility graph," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    15. Hu, Xiaohua & Niu, Min, 2023. "Degree distributions and motif profiles of Thue–Morse complex network," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    16. J. Alberto Conejero & Andrei Velichko & Òscar Garibo-i-Orts & Yuriy Izotov & Viet-Thanh Pham, 2024. "Exploring the Entropy-Based Classification of Time Series Using Visibility Graphs from Chaotic Maps," Mathematics, MDPI, vol. 12(7), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.