IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v155y2022ics0960077921010572.html
   My bibliography  Save this article

Identifying symmetries and predicting cluster synchronization in complex networks

Author

Listed:
  • Khanra, Pitambar
  • Ghosh, Subrata
  • Alfaro-Bittner, Karin
  • Kundu, Prosenjit
  • Boccaletti, Stefano
  • Hens, Chittaranjan
  • Pal, Pinaki

Abstract

Symmetries in a network connectivity regulate how the graph’s functioning organizes into clustered states. Classical methods for tracing the symmetry group of a network require very high computational costs, and therefore they are of hard, or even impossible, execution for large sized graphs. We here unveil that there is a direct connection between the elements of the eigen-vector centrality and the clusters of a network. This gives a fresh framework for cluster analysis in undirected and connected graphs, whose time complexity is of O(N2). We show that the cluster identification is in perfect agreement with symmetry based analyses, and it allows predicting the sequence of synchronized clusters which form before the eventual occurrence of global synchronization.

Suggested Citation

  • Khanra, Pitambar & Ghosh, Subrata & Alfaro-Bittner, Karin & Kundu, Prosenjit & Boccaletti, Stefano & Hens, Chittaranjan & Pal, Pinaki, 2022. "Identifying symmetries and predicting cluster synchronization in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010572
    DOI: 10.1016/j.chaos.2021.111703
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921010572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis M. Pecora & Francesco Sorrentino & Aaron M. Hagerstrom & Thomas E. Murphy & Rajarshi Roy, 2014. "Cluster synchronization and isolated desynchronization in complex networks with symmetries," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    2. Fabio Rossa & Louis Pecora & Karen Blaha & Afroza Shirin & Isaac Klickstein & Francesco Sorrentino, 2020. "Symmetries and cluster synchronization in multilayer networks," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    3. Khanra, Pitambar & Pal, Pinaki, 2021. "Explosive synchronization in multilayer networks through partial adaptation," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    4. Pradhan, Priodyuti & C.U., Angeliya & Jalan, Sarika, 2020. "Principal eigenvector localization and centrality in networks: Revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bosiljka Tadić & Roderick Melnik, 2024. "Fundamental interactions in self-organised critical dynamics on higher order networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atiyeh Bayani & Fahimeh Nazarimehr & Sajad Jafari & Kirill Kovalenko & Gonzalo Contreras-Aso & Karin Alfaro-Bittner & Rubén J. Sánchez-García & Stefano Boccaletti, 2024. "The transition to synchronization of networked systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Huang, Changwei & Luo, Yijun & Han, Wenchen, 2023. "Cooperation and synchronization in evolutionary opinion changing rate games," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Tlaie, A. & Ballesteros-Esteban, L.M. & Leyva, I. & Sendiña-Nadal, I., 2019. "Statistical complexity and connectivity relationship in cultured neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 284-290.
    4. Nguyen, Tung T. & Budzinski, Roberto C. & Pasini, Federico W. & Delabays, Robin & Mináč, Ján & Muller, Lyle E., 2023. "Broadcasting solutions on networked systems of phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    5. Fan, Hongguang & Shi, Kaibo & Zhao, Yi, 2022. "Pinning impulsive cluster synchronization of uncertain complex dynamical networks with multiple time-varying delays and impulsive effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    6. Tang, Longkun & Wang, Jiadong & Liang, Jianli, 2023. "Inter-layer synchronization on a two-layer network of unified chaotic systems: The role of network nodal dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    7. Md Sayeed Anwar & Dibakar Ghosh & Nikita Frolov, 2021. "Relay Synchronization in a Weighted Triplex Network," Mathematics, MDPI, vol. 9(17), pages 1-10, September.
    8. Li, Xianghua & Zhen, Xiyuan & Qi, Xin & Han, Huichun & Zhang, Long & Han, Zhen, 2023. "Dynamic community detection based on graph convolutional networks and contrastive learning," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I., 2022. "Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    10. Ye, Jiachen & Ji, Peng & Waxman, David & Lin, Wei & Moreno, Yamir, 2020. "Impact of intra and inter-cluster coupling balance on the performance of nonlinear networked systems," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Anwar, Md Sayeed & Kundu, Srilena & Ghosh, Dibakar, 2021. "Enhancing synchrony in asymmetrically weighted multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Minati, Ludovico & Bartels, Jim & Li, Chao & Frasca, Mattia & Ito, Hiroyuki, 2022. "Synchronization phenomena in dual-transistor spiking oscillators realized experimentally towards physical reservoirs," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    13. Bosiljka Tadić & Roderick Melnik, 2024. "Fundamental interactions in self-organised critical dynamics on higher order networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(6), pages 1-13, June.
    14. Wang, Ning & Gao, Ying & He, Jia-tao & Yang, Jun, 2022. "Robustness evaluation of the air cargo network considering node importance and attack cost," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    15. Chai, Yuan & Xu, Li & Zhang, Hudong, 2021. "Interchangeable outer synchronization of community networks with two spatiotemporal clusters," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    16. Tommaso Menara & Giacomo Baggio & Dani Bassett & Fabio Pasqualetti, 2022. "Functional control of oscillator networks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Muolo, Riccardo & Carletti, Timoteo & Bianconi, Ginestra, 2024. "The three way Dirac operator and dynamical Turing and Dirac induced patterns on nodes and links," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    18. Shepelev, I.A. & Vadivasova, T.E., 2021. "Synchronization in multiplex networks of chaotic oscillators with frequency mismatch," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    19. Minati, Ludovico & Li, Boyan & Bartels, Jim & Li, Zixuan & Frasca, Mattia & Ito, Hiroyuki, 2022. "Incomplete synchronization of chaos under frequency-limited coupling: Observations in single-transistor microwave oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    20. Rybalova, E.V. & Zakharova, A. & Strelkova, G.I., 2021. "Interplay between solitary states and chimeras in multiplex neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:155:y:2022:i:c:s0960077921010572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.