IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip2s0960077921008584.html
   My bibliography  Save this article

Statistical properties of mutualistic-competitive random networks

Author

Listed:
  • Martínez-Martínez, C.T.
  • Méndez-Bermúdez, J.A.
  • Peron, Thomas
  • Moreno, Yamir

Abstract

Mutualistic networks are used to study the structure and processes inherent to mutualistic relationships. In this paper, we introduce a random matrix ensemble (RME) representing the adjacency matrices of mutualistic networks composed by two vertex sets of sizes n and m−n. Our RME depends on three parameters: the network size n, the size of the smaller set m, and the connectivity between the two sets α, where α is the ratio of current adjacent pairs over the total number of possible adjacent pairs between the sets. We focus on the spectral, eigenvector and topological properties of the RME by computing, respectively, the ratio of consecutive eigenvalue spacings r, the Shannon entropy of the eigenvectors S, and the Randić index R. First, within a random matrix theory approach (i.e. a statistical approach), we identify a parameter ξ≡ξ(n,m,α) that scales the average normalized measures (with X representing r, S and R). Specifically, we show that (i) ξ∝αn with a weak dependence on m, and (ii) for ξ<1/10 most vertices in the mutualistic network are isolated, while for ξ>10 the network acquires the properties of a complete network, i.e., the transition from isolated vertices to a complete-like behavior occurs in the interval 1/10<ξ<10. Then, we demonstrate that our statistical approach predicts reasonably well the properties of real-world mutualistic networks; that is, the universal curves vs. ξ show good correspondence with the properties of real-world networks.

Suggested Citation

  • Martínez-Martínez, C.T. & Méndez-Bermúdez, J.A. & Peron, Thomas & Moreno, Yamir, 2021. "Statistical properties of mutualistic-competitive random networks," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008584
    DOI: 10.1016/j.chaos.2021.111504
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008584
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111504?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torres-Vargas, G. & Fossion, R. & Méndez-Bermúdez, J.A., 2020. "Normal mode analysis of spectra of random networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Ugo Bastolla & Miguel A. Fortuna & Alberto Pascual-García & Antonio Ferrera & Bartolo Luque & Jordi Bascompte, 2009. "The architecture of mutualistic networks minimizes competition and increases biodiversity," Nature, Nature, vol. 458(7241), pages 1018-1020, April.
    3. Fredrik Liljeros & Christofer R. Edling & Luís A. Nunes Amaral & H. Eugene Stanley & Yvonne Åberg, 2001. "The web of human sexual contacts," Nature, Nature, vol. 411(6840), pages 907-908, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Fiera & Jan Christian Habel & Werner Ulrich, 2018. "Neutral colonisations drive high beta-diversity in cavernicole springtails (Collembola)," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-12, January.
    2. Colton Brehm & Astrid Layton, 2021. "Nestedness of eco‐industrial networks: Exploring linkage distribution to promote sustainable industrial growth," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 205-218, February.
    3. Benadi, Gita & Blüthgen, Nico & Hovestadt, Thomas & Poethke, Hans-Joachim, 2013. "Contrasting specialization–stability relationships in plant–animal mutualistic systems," Ecological Modelling, Elsevier, vol. 258(C), pages 65-73.
    4. Zhangbo Yang & Jingen Song & Shanxing Gao & Hui Wang & Yingfei Du & Qiuyue Lin, 2021. "Contact network analysis of Covid-19 in tourist areas——Based on 333 confirmed cases in China," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-13, December.
    5. Chengyi Tu & Joel Carr & Samir Suweis, 2016. "A data driven network approach to rank countries production diversity and food specialization," Papers 1606.01270, arXiv.org.
    6. , D. & Tessone, Claudio J. & ,, 2014. "Nestedness in networks: A theoretical model and some applications," Theoretical Economics, Econometric Society, vol. 9(3), September.
    7. Jing Yang & Yingwu Chen, 2011. "Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-5, July.
    8. Ammar Alhmedi & Tim Belien & Dany Bylemans, 2023. "Habitat Modification Alters Food Web Interactions with Focus on Biological Control of Aphids in Apple Orchards," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    9. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Wang, Xiangrong & Peron, Thomas & Dubbeldam, Johan L.A. & Kéfi, Sonia & Moreno, Yamir, 2023. "Interspecific competition shapes the structural stability of mutualistic networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    11. Muhammad Awais Rasool & Muhammad Azher Hassan & Xiaobo Zhang & Qing Zeng & Yifei Jia & Li Wen & Guangchun Lei, 2021. "Habitat Quality and Social Behavioral Association Network in a Wintering Waterbirds Community," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
    12. Courtney D. Corley & Diane J. Cook & Armin R. Mikler & Karan P. Singh, 2010. "Text and Structural Data Mining of Influenza Mentions in Web and Social Media," IJERPH, MDPI, vol. 7(2), pages 1-20, February.
    13. Sebastián Bustos & Charles Gomez & Ricardo Hausmann & César A Hidalgo, 2012. "The Dynamics of Nestedness Predicts the Evolution of Industrial Ecosystems," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-8, November.
    14. Merza, Ádám & London, András & Kiss, István Márton & Pelle, Anita & Dombi, József & Németh, Tamás, 2016. "A világkereskedelem hálózatelméleti vizsgálatának lehetőségeiről [The scope for analysis of world trade through network theory]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 79-98.
    15. Fabio Saracco & Riccardo Di Clemente & Andrea Gabrielli & Tiziano Squartini, 2015. "Detecting early signs of the 2007-2008 crisis in the world trade," Papers 1508.03533, arXiv.org, revised Jul 2016.
    16. Timothée Poisot & Sonia Kéfi & Serge Morand & Michal Stanko & Pablo A Marquet & Michael E Hochberg, 2015. "A Continuum of Specialists and Generalists in Empirical Communities," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    17. Roland Pongou & Guy Tchuente & Jean-Baptiste Tondji, 2021. "Optimally Targeting Interventions in Networks during a Pandemic: Theory and Evidence from the Networks of Nursing Homes in the United States," Papers 2110.10230, arXiv.org.
    18. Kephart, Curtis & Friedman, Daniel & Baumer, Matt, 2015. "Emergence of networks and market institutions in a large virtual economy," Discussion Papers, Research Professorship Market Design: Theory and Pragmatics SP II 2015-502, WZB Berlin Social Science Center.
    19. Sabine Dritz & Rebecca A. Nelson & Fernanda S. Valdovinos, 2023. "The role of intra-guild indirect interactions in assembling plant-pollinator networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Susanne F Awad & Sema K Sgaier & Bushimbwa C Tambatamba & Yousra A Mohamoud & Fiona K Lau & Jason B Reed & Emmanuel Njeuhmeli & Laith J Abu-Raddad, 2015. "Investigating Voluntary Medical Male Circumcision Program Efficiency Gains through Subpopulation Prioritization: Insights from Application to Zambia," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.