IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920308894.html
   My bibliography  Save this article

Local dispersal, trophic interactions and handling times mediate contrasting effects in prey-predator dynamics

Author

Listed:
  • Mohd, Mohd Hafiz
  • Md. Noorani, Mohd Salmi

Abstract

Trophic interactions between prey and predator species are an ubiquitous force in nature and it is reckoned to be one of the most important factors that can shape species geographical range limits. To better understand how local dispersal and predator handling times affect community dynamics, we perform a bifurcation analysis of a partial differential equations model consisting of environmental gradients, trophic (generalist, specialist predator and prey species) interactions and spatial diffusion components. Our co-dimension one bifurcation results depict the existence of numerous threshold values corresponding to supercritical and subcritical Hopf bifurcations, saddle-node bifurcation of cycles and transcritical bifurcation, as the magnitude of handling times and the generalist predation-induced mortality force change in this ecological system with local dispersal. It is discovered that the interaction between these distinct local bifurcations leads to higher codimension (two) bifurcation such as a generalised Hopf bifurcation, which acts as an organising centre of the dynamics. Ecologically, we also observe that: (i) without dispersal, higher levels of generalist predation (which acts as a mortality agent) require shorter specialist predator handling times to promote the maintenance of biodiversity through coexistence steady state of prey-predator species and oscillatory dynamics; however, lower forces of generalist predation result in longer specialist predator handling times and this situation induces destabilisation of species biodiversity; (ii) local dispersal stabilises the trophic dynamics and mediates more species diversity outcomes; (iii) dispersal interacts with lower magnitudes of generalist predator-induced mortality to generate bistability phenomenon between stable limit cycles and coexistence steady state; (iv) interestingly, higher intensities of mortality factor combined with dispersal may destroy some interior attractors, and exclude bistability-oscillatory dynamics in this trophic system; consequently, this situation leads to the extinction of specialist predator species and jeopardises species biodiversity. Taken together, our findings illustrate the influential roles of local dispersal, trophic interactions and handling times in determining community dynamics and these insights may have important consequences in conservation management and biological control strategies.

Suggested Citation

  • Mohd, Mohd Hafiz & Md. Noorani, Mohd Salmi, 2021. "Local dispersal, trophic interactions and handling times mediate contrasting effects in prey-predator dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308894
    DOI: 10.1016/j.chaos.2020.110497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    2. Mohd, Mohd Hafiz, 2019. "Diversity in interaction strength promotes rich dynamical behaviours in a three-species ecological system," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 243-253.
    3. Mohd, Mohd Hafiz & Murray, Rua & Plank, Michael J. & Godsoe, William, 2016. "Effects of dispersal and stochasticity on the presence–absence of multiple species," Ecological Modelling, Elsevier, vol. 342(C), pages 49-59.
    4. Mohd, Mohd Hafiz & Murray, Rua & Plank, Michael J. & Godsoe, William, 2017. "Effects of biotic interactions and dispersal on the presence-absence of multiple species," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 185-194.
    5. Moustafa, Mahmoud & Mohd, Mohd Hafiz & Ismail, Ahmad Izani & Abdullah, Farah Aini, 2018. "Dynamical analysis of a fractional-order Rosenzweig–MacArthur model incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aliyu, Murtala Bello & Mohd, Mohd Hafiz, 2021. "The interplay between mutualism, competition and dispersal promotes species coexistence in a multiple interactions type system," Ecological Modelling, Elsevier, vol. 452(C).
    2. Umar Sharif, Umi Syahirah Binti & Mohd, Mohd Hafiz, 2022. "Combined influences of environmental enrichment and harvesting mediate rich dynamics in an intraguild predation fishery system," Ecological Modelling, Elsevier, vol. 474(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aliyu, Murtala Bello & Mohd, Mohd Hafiz, 2021. "The interplay between mutualism, competition and dispersal promotes species coexistence in a multiple interactions type system," Ecological Modelling, Elsevier, vol. 452(C).
    2. Mohd, Mohd Hafiz & Park, Junpyo, 2021. "The interplay of rock-paper-scissors competition and environments mediates species coexistence and intriguing dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    3. Park, Junpyo, 2021. "Evolutionary dynamics in the rock-paper-scissors system by changing community paradigm with population flow," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Umar Sharif, Umi Syahirah Binti & Mohd, Mohd Hafiz, 2022. "Combined influences of environmental enrichment and harvesting mediate rich dynamics in an intraguild predation fishery system," Ecological Modelling, Elsevier, vol. 474(C).
    5. Mohd, Mohd Hafiz, 2019. "Diversity in interaction strength promotes rich dynamical behaviours in a three-species ecological system," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 243-253.
    6. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    7. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    8. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Miehls, Andrea L. Jaeger & Mason, Doran M. & Frank, Kenneth A. & Krause, Ann E. & Peacor, Scott D. & Taylor, William W., 2009. "Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion," Ecological Modelling, Elsevier, vol. 220(22), pages 3182-3193.
    10. Yacine, Youssef & Loeuille, Nicolas, 2022. "Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions," Ecological Modelling, Elsevier, vol. 465(C).
    11. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    12. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    13. Wang, Shuran Cindy & Liu, Xueqin & Liu, Yong & Wang, Hongzhu, 2020. "Benthic-pelagic coupling in lake energetic food webs," Ecological Modelling, Elsevier, vol. 417(C).
    14. Rose, Kenneth A. & Sable, Shaye & DeAngelis, Donald L. & Yurek, Simeon & Trexler, Joel C. & Graf, William & Reed, Denise J., 2015. "Proposed best modeling practices for assessing the effects of ecosystem restoration on fish," Ecological Modelling, Elsevier, vol. 300(C), pages 12-29.
    15. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    16. Chunning Song & Yu Zhang & Qijin Ling & Shaogeng Zheng, 2022. "Joint Estimation of SOC and SOH for Single-Flow Zinc–Nickel Batteries," Energies, MDPI, vol. 15(13), pages 1-16, June.
    17. Md Sayeed Anwar & Dibakar Ghosh & Nikita Frolov, 2021. "Relay Synchronization in a Weighted Triplex Network," Mathematics, MDPI, vol. 9(17), pages 1-10, September.
    18. Bagchi, Dweepabiswa & Arumugam, Ramesh & Chandrasekar, V.K. & Senthilkumar, D.V., 2022. "Metacommunity stability and persistence for predation turnoff in selective patches," Ecological Modelling, Elsevier, vol. 470(C).
    19. Agus Suryanto & Isnani Darti & Hasan S. Panigoro & Adem Kilicman, 2019. "A Fractional-Order Predator–Prey Model with Ratio-Dependent Functional Response and Linear Harvesting," Mathematics, MDPI, vol. 7(11), pages 1-13, November.
    20. Maar, Marie & Butenschön, Momme & Daewel, Ute & Eggert, Anja & Fan, Wei & Hjøllo, Solfrid S. & Hufnagl, Marc & Huret, Martin & Ji, Rubao & Lacroix, Geneviève & Peck, Myron A. & Radtke, Hagen & Sailley, 2018. "Responses of summer phytoplankton biomass to changes in top-down forcing: Insights from comparative modelling," Ecological Modelling, Elsevier, vol. 376(C), pages 54-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.