IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v42y2009i5p2741-2747.html
   My bibliography  Save this article

On the fractional calculus of Besicovitch function

Author

Listed:
  • Liang, Yongshun

Abstract

Relationship between fractional calculus and fractal functions has been explored. Based on prior investigations dealing with certain fractal functions, fractal dimensions including Hausdorff dimension, Box dimension, K-dimension and Packing dimension is shown to be a linear function of order of fractional calculus. Both Riemann–Liouville fractional calculus and Weyl–Marchaud fractional derivative of Besicovitch function have been discussed.

Suggested Citation

  • Liang, Yongshun, 2009. "On the fractional calculus of Besicovitch function," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 2741-2747.
  • Handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:2741-2747
    DOI: 10.1016/j.chaos.2009.03.180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077909003403
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2009.03.180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Y.S. & Su, W.Y., 2007. "The relationship between the fractal dimensions of a type of fractal functions and the order of their fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 682-692.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao, Kui & Chen, Haotian & Peng, W.L. & Wang, Zekun & Yao, Jia & Wu, Yipeng, 2021. "A new method on Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Chandra, Subhash & Abbas, Syed, 2022. "Fractal dimensions of mixed Katugampola fractional integral associated with vector valued functions," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Mdallal, Qasem M., 2009. "An efficient method for solving fractional Sturm–Liouville problems," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 183-189.
    2. Yao, Kui & Chen, Haotian & Peng, W.L. & Wang, Zekun & Yao, Jia & Wu, Yipeng, 2021. "A new method on Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    4. Brechtl, Jamieson & Xie, Xie & Liaw, Peter K. & Zinkle, Steven J., 2018. "Complexity modeling and analysis of chaos and other fluctuating phenomena," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 166-175.
    5. Yao, K. & Liang, Y.S. & Zhang, F., 2009. "On the connection between the order of the fractional derivative and the Hausdorff dimension of a fractal function," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2538-2545.
    6. Yao, K. & Liang, Y.S. & Fang, J.X., 2008. "The fractal dimensions of graphs of the Weyl-Marchaud fractional derivative of the Weierstrass-type function," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 106-115.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:42:y:2009:i:5:p:2741-2747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.