IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920303088.html
   My bibliography  Save this article

Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters

Author

Listed:
  • Bevia, V.
  • Burgos, C.
  • Cortés, J.-C.
  • Navarro-Quiles, A.
  • Villanueva, R.-J.

Abstract

In spite of its simple formulation via a nonlinear differential equation, the Gompertz model has been widely applied to describe the dynamics of biological and biophysical parts of complex systems (growth of living organisms, number of bacteria, volume of infected cells, etc.). Its parameters or coefficients and the initial condition represent biological quantities (usually, rates and number of individual/particles, respectively) whose nature is random rather than deterministic. In this paper, we present a complete uncertainty quantification analysis of the randomized Gomperz model via the computation of an explicit expression to the first probability density function of its solution stochastic process taking advantage of the Liouville-Gibbs theorem for dynamical systems. The stochastic analysis is completed by computing other important probabilistic information of the model like the distribution of the time until the solution reaches an arbitrary value of specific interest and the stationary distribution of the solution. Finally, we apply all our theoretical findings to two examples, the first of numerical nature and the second to model the dynamics of weight of a species using real data.

Suggested Citation

  • Bevia, V. & Burgos, C. & Cortés, J.-C. & Navarro-Quiles, A. & Villanueva, R.-J., 2020. "Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303088
    DOI: 10.1016/j.chaos.2020.109908
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303088
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109908?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorini, F.A. & Cunha, M.C.C., 2011. "On the linear advection equation subject to random velocity fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 679-690.
    2. Cortés, J.C. & Jódar, L. & Villafuerte, L., 2009. "Random linear-quadratic mathematical models: Computing explicit solutions and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2076-2090.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Donglin & Zheng, Yang & Liu, Wanying & Chen, Tianya & Chen, Qijuan, 2022. "Interval uncertainty analysis of vibration response of hydroelectric generating unit based on Chebyshev polynomial," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Cortés, J.-C. & Moscardó-García, A. & Villanueva, R.-J., 2022. "Uncertainty quantification for hybrid random logistic models with harvesting via density functions," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calatayud, Julia & Carlos Cortés, Juan & Jornet, Marc, 2020. "Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Dorini, F.A. & Cunha, M.C.C., 2011. "On the linear advection equation subject to random velocity fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 679-690.
    3. Calatayud, J. & Cortés, J.-C. & Jornet, M., 2018. "The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 261-279.
    4. Arenas, Abraham J. & González-Parra, Gilberto & Jódar, Lucas, 2010. "Randomness in a mathematical model for the transmission of respiratory syncytial virus (RSV)," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(5), pages 971-981.
    5. Cortés, J.-C. & Moscardó-García, A. & Villanueva, R.-J., 2022. "Uncertainty quantification for hybrid random logistic models with harvesting via density functions," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Calatayud, J. & Cortés, J.-C. & Dorini, F.A. & Jornet, M., 2020. "Extending the study on the linear advection equation subject to stochastic velocity field and initial condition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 159-174.
    7. Shalimova Irina & Sabelfeld Karl K., 2019. "A random walk on small spheres method for solving transient anisotropic diffusion problems," Monte Carlo Methods and Applications, De Gruyter, vol. 25(3), pages 271-282, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.