IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v512y2018icp261-279.html
   My bibliography  Save this article

The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function

Author

Listed:
  • Calatayud, J.
  • Cortés, J.-C.
  • Jornet, M.

Abstract

This paper deals with the damped pendulum random differential equation: Ẍ(t)+2ω0ξẊ(t)+ω02X(t)=Y(t), t∈[0,T], with initial conditions X(0)=X0 and Ẋ(0)=X1. The forcing term Y(t) is a stochastic process and X0 and X1 are random variables in a common underlying complete probability space (Ω,F,P). The term X(t) is a stochastic process that solves the random differential equation in both the sample path and in the Lp senses. To understand the probabilistic behavior of X(t), we need its joint finite-dimensional distributions. We establish mild conditions under which X(t) is an absolutely continuous random variable, for each t, and we find its probability density function fX(t)(x). Thus, we obtain the first finite-dimensional distributions. In practice, we deal with two types of forcing term: Y(t) is a Gaussian process, which occurs with the damped pendulum stochastic differential equation of Itô type; and Y(t) can be approximated by a sequence {YN(t)}N=1∞ in L2([0,T]×Ω), which occurs with Karhunen–Loève expansions and some random power series. Finally, we provide numerical examples in which we choose specific random variables X0 and X1 and a specific stochastic process Y(t), and then, we find the probability density function of X(t).

Suggested Citation

  • Calatayud, J. & Cortés, J.-C. & Jornet, M., 2018. "The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 261-279.
  • Handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:261-279
    DOI: 10.1016/j.physa.2018.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118309762
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mallick, K., 2007. "Random oscillator with general Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(1), pages 64-68.
    2. Dorini, F.A. & Cunha, M.C.C., 2011. "On the linear advection equation subject to random velocity fields," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 679-690.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Calatayud, Julia & Carlos Cortés, Juan & Jornet, Marc, 2020. "Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Juan-Carlos Cortés & Elena López-Navarro & José-Vicente Romero & María-Dolores Roselló, 2021. "Approximating the Density of Random Differential Equations with Weak Nonlinearities via Perturbation Techniques," Mathematics, MDPI, vol. 9(3), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calatayud, Julia & Carlos Cortés, Juan & Jornet, Marc, 2020. "Computing the density function of complex models with randomness by using polynomial expansions and the RVT technique. Application to the SIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Bevia, V. & Burgos, C. & Cortés, J.-C. & Navarro-Quiles, A. & Villanueva, R.-J., 2020. "Uncertainty quantification analysis of the biological Gompertz model subject to random fluctuations in all its parameters," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Calatayud, J. & Cortés, J.-C. & Dorini, F.A. & Jornet, M., 2020. "Extending the study on the linear advection equation subject to stochastic velocity field and initial condition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 159-174.
    4. Shalimova Irina & Sabelfeld Karl K., 2019. "A random walk on small spheres method for solving transient anisotropic diffusion problems," Monte Carlo Methods and Applications, De Gruyter, vol. 25(3), pages 271-282, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:512:y:2018:i:c:p:261-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.