IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v134y2020ics0960077920301156.html
   My bibliography  Save this article

Stochastic Lagrangians for noisy dynamics

Author

Listed:
  • Materassi, Massimo

Abstract

The dynamical variables ψ of a classical system, undergoing stochastic stirring forces, satisfy equations of motion with noise terms. Hence, these ψ show a stochastic evolution themselves. The probability of each possible realization of ψ within a given time interval, arises from the interplay between the deterministic parts of dynamics and the statistics of noise terms. In this work, we discuss the construction of the stochastic Lagrangian out of the dynamical equations, that is a tool to calculate the realization probabilities of the variables ψ as path integrals.

Suggested Citation

  • Materassi, Massimo, 2020. "Stochastic Lagrangians for noisy dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
  • Handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301156
    DOI: 10.1016/j.chaos.2020.109713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920301156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Misra, B. & Prigogine, I. & Courbage, M., 1979. "From deterministic dynamics to probabilistic descriptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 98(1), pages 1-26.
    2. Materassi, Massimo, 2019. "Stochastic field theory for the ionospheric fluctuations in Equatorial Spread F," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 186-210.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prigogine, Ilya & Petrosky, Tomio Y., 1987. "Intrinsic irreversibility in quantum theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 147(1), pages 33-47.
    2. Suchanecki, Zdzislaw, 1992. "On lambda and internal time operators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 187(1), pages 249-266.
    3. Prigogine, Ilya & Petrosky, Tomio Y., 1988. "An alternative to quantum theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 147(3), pages 461-486.
    4. Łuczka, Jerzy, 1982. "Kinetic theory of resonance and relaxation in spin systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 111(1), pages 240-254.
    5. Nagata, Ken-ichi & Katsuyama, Tomoo, 1989. "A new probabilistic description for intermittent turbulence: Internal time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 155(3), pages 585-603.
    6. Coveney, P.V., 1987. "Statistical mechanics of a large dynamical system interacting with an external time-dependent field: generalised correlation subdynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 143(3), pages 507-534.
    7. Petrosky, T. & Prigogine, I., 1991. "Alternative formulation of classical and quantum dynamics for non-integrable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 175(1), pages 146-209.
    8. Miloš Milovanović & Nicoletta Saulig, 2022. "An Intensional Probability Theory: Investigating the Link between Classical and Quantum Probabilities," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    9. Coveney, P.V. & George, Cl., 1987. "On the time-dependent formulation of analytical continuation in non-equilibrium statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 141(2), pages 403-426.
    10. Miloš Milovanović & Nicoletta Saulig, 2024. "The Duality of Psychological and Intrinsic Time in Artworks," Mathematics, MDPI, vol. 12(12), pages 1-14, June.
    11. Gialampoukidis, I. & Gustafson, K. & Antoniou, I., 2014. "Time operator of Markov chains and mixing times. Applications to financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 141-155.
    12. Berezin, V.T., 1982. "Nonequilibrium-relativistic long-wave limit in thermomechanics of polarizable multicomponent systems II," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 116(1), pages 74-100.
    13. Gialampoukidis, I. & Gustafson, K. & Antoniou, I., 2013. "Financial Time Operator for random walk markets," Chaos, Solitons & Fractals, Elsevier, vol. 57(C), pages 62-72.
    14. Antoniou, I. & Gustafson, K. & Suchanecki, Z., 1998. "On the inverse problem of statistical physics: from irreversible semigroups to chaotic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 252(3), pages 345-361.
    15. Miloš Milovanović & Srđan Vukmirović & Nicoletta Saulig, 2021. "Stochastic Analysis of the Time Continuum," Mathematics, MDPI, vol. 9(12), pages 1-20, June.
    16. Lockhart, C.M. & Misra, B., 1986. "Irreversebility and measurement in quantum mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 136(1), pages 47-76.
    17. Courbage, M. & Misra, B., 1980. "On the equivalence between Bernoulli dynamical systems and stochastic Markov processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 104(3), pages 359-377.
    18. Gialampoukidis, Ilias & Antoniou, Ioannis, 2015. "Age, Innovations and Time Operator of Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 140-155.
    19. Suchanecki, Zdzisław & Weron, Aleksander, 1990. "Characterizations of intrinsically random dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 166(2), pages 220-228.
    20. Henin, F. & Mayné, F., 1981. "Physical description of decay processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 108(2), pages 281-304.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:134:y:2020:i:c:s0960077920301156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.