Design of an explicit expression of the Poincaré map for the passive dynamic walking of the compass-gait biped model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2019.109436
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gritli, Hassène & Belghith, Safya, 2018. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark–Sacker bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 158-168.
- Gritli, Hassène & Belghith, Safya, 2017. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 72-87.
- Gritli, Hassène, 2019. "Poincaré maps design for the stabilization of limit cycles in non-autonomous nonlinear systems via time-piecewise-constant feedback controllers with application to the chaotic Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 127-145.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rao, XiaoBo & Gao, JianShe & Ding, ShunLiang & Liang, Jie & Zhang, Jiangang, 2023. "Multistability of gaits, the basin of attraction and its external topology in the simplest passive walking model on stairs," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
- Jiang, Bo & Jiang, Hui & Liu, Qihuai & Jiang, Guirong, 2024. "Periodic gait classification and control of a biped model with telescopic legs and pulse thrust," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gritli, Hassène, 2019. "Poincaré maps design for the stabilization of limit cycles in non-autonomous nonlinear systems via time-piecewise-constant feedback controllers with application to the chaotic Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 127-145.
- Gritli, Hassène & Belghith, Safya, 2018. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark–Sacker bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 158-168.
- Jiang, Bo & Jiang, Hui & Liu, Qihuai & Jiang, Guirong, 2024. "Periodic gait classification and control of a biped model with telescopic legs and pulse thrust," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
More about this item
Keywords
Compass-gait biped model; Impulsive hybrid nonlinear dynamics; Hybrid limit cycle; Poincaré map; Jacobian matrix; Comparison and similarity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:130:y:2020:i:c:s0960077919303820. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.