IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v98y2017icp72-87.html
   My bibliography  Save this article

Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map

Author

Listed:
  • Gritli, Hassène
  • Belghith, Safya

Abstract

In our previous work, we have analyzed the passive dynamic walking of the compass-gait biped model under the OGY-based state-feedback control using the impulsive hybrid nonlinear dynamics. Such study was carried out through bifurcation diagrams. It was shown that the controlled bipedal gait exhibits attractive nonlinear phenomena such as the cyclic-fold (saddle-node) bifurcation, the period-doubling (flip) bifurcation and chaos. Moreover, we revealed that, using the controlled continuous-time dynamics, we encountered a problem in finding, identifying and hence following branches of (un)stable solutions in order to characterize local bifurcations. The present paper solves such problem and then provides a further investigation of the controlled bipedal walking dynamics using the developed analytical expression of the controlled hybrid Poincaré map. Thus, we show that analysis via such Poincaré map allows to follow branches of both stable and unstable fixed points in bifurcation diagrams and hence to explore the complete dynamics of the controlled compass-gait biped model. We demonstrate the generation, other than the conventional local bifurcations in bipedal walking, i.e. the flip bifurcation and the saddle-node bifurcation, of a saddle-saddle bifurcation, a subcritical flip bifurcation and a new type of a local bifurcation, the saddle-flip bifurcation. In addition, to further understand the occurrence of the local bifurcations, we present an analysis with a two-parameter bifurcation diagram. Some new hidden walking dynamics are identified.

Suggested Citation

  • Gritli, Hassène & Belghith, Safya, 2017. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Analysis of local bifurcations via the hybrid Poincaré map," Chaos, Solitons & Fractals, Elsevier, vol. 98(C), pages 72-87.
  • Handle: RePEc:eee:chsofr:v:98:y:2017:i:c:p:72-87
    DOI: 10.1016/j.chaos.2017.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917300577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaygisiz, Burak H. & Erkmen, Ismet & Erkmen, Aydan M., 2006. "Intelligent analysis of chaos roughness in regularity of walk for a two legged robot," Chaos, Solitons & Fractals, Elsevier, vol. 29(1), pages 148-161.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Znegui, Wafa & Gritli, Hassène & Belghith, Safya, 2020. "Design of an explicit expression of the Poincaré map for the passive dynamic walking of the compass-gait biped model," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Gritli, Hassène & Belghith, Safya, 2018. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark–Sacker bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 158-168.
    3. Jiang, Bo & Jiang, Hui & Liu, Qihuai & Jiang, Guirong, 2024. "Periodic gait classification and control of a biped model with telescopic legs and pulse thrust," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    4. Gritli, Hassène, 2019. "Poincaré maps design for the stabilization of limit cycles in non-autonomous nonlinear systems via time-piecewise-constant feedback controllers with application to the chaotic Duffing oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 127-145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gritli, Hassène & Belghith, Safya, 2018. "Walking dynamics of the passive compass-gait model under OGY-based state-feedback control: Rise of the Neimark–Sacker bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 158-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:98:y:2017:i:c:p:72-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.