IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v188y2024ics0960077924011238.html
   My bibliography  Save this article

Piezoelectric energy harvesting from walking motion of a passive biped robot model with flexible legs

Author

Listed:
  • Safartoobi, Masoumeh
  • Dardel, Morteza
  • Daniali, Hamidreza Mohammadi

Abstract

Passive dynamic walking biped robots utilize the inherent dynamics of their structure to achieve walking motion without continuous actuation, enhancing energy efficiency and stability. Replacing conventional rigid legs with flexible elastic beams in the simplest passive walker will be associated with undesirable vibrations. Despite the positive effect of the damper in reducing vibrations, the current research has used the piezoelectric energy harvesting with the aim of reducing the wasted energy of the gait cycle and improving its stability range. For this purpose, the electromechanical Lagrange equations are determined by applying Hamilton's principle and the assumed mode method and then, the new definition of the step function is obtained through numerical methods, solving a boundary value problem to establish proper initial conditions for stable walking. Numerical simulations indicate that the piezoelectric energy harvester can create a stable period-one gait cycle by optimizing the length of the piezo layers attached to the undamped elastic legs despite the presence of small vibrations. Additional results are presented in bifurcation diagrams, investigating the effect of important physical and structural parameters such as slope angle, length and thickness of the piezo layer.

Suggested Citation

  • Safartoobi, Masoumeh & Dardel, Morteza & Daniali, Hamidreza Mohammadi, 2024. "Piezoelectric energy harvesting from walking motion of a passive biped robot model with flexible legs," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011238
    DOI: 10.1016/j.chaos.2024.115571
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924011238
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924011238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.