IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v126y2019icp60-65.html
   My bibliography  Save this article

Impacts of node arrangements on synchronization of a ring oscillatory power network

Author

Listed:
  • Yang, Li-xin
  • Jiang, Jun
  • Liu, Xiao-jun

Abstract

Power network refers to a complex system that relies on the interactions between generators and consumers. This paper mainly studies the influence of consumers and generators arrangement on the synchronization of a ring-coupled power network. It is shown by numerical results that node arrangement strategies play a key role in the collective behavior of ring power network. Furthermore, it can be discovered that different arrangements of the consumer and generator nodes on a ring leads to different threshold of coupling strength for frequency synchronization. More specifically, the closer the nodes, which are more heterogeneous on a ring, are to each other, the stronger the synchronizability of power network is. On the contrary, the closer the nodes, which are less heterogeneous, are to each other, the weaker the synchronizability of power network is. The results show that the strategies of generator and consumer nodes arrangement have influence on the synchronization stability and highlight the importance of structural organization of network in synchronization dynamics.

Suggested Citation

  • Yang, Li-xin & Jiang, Jun & Liu, Xiao-jun, 2019. "Impacts of node arrangements on synchronization of a ring oscillatory power network," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 60-65.
  • Handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:60-65
    DOI: 10.1016/j.chaos.2019.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919302097
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Schäfer & Dirk Witthaut & Marc Timme & Vito Latora, 2018. "Dynamically induced cascading failures in power grids," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    2. Yang, Li-xin & Jiang, Jun, 2017. "Impacts of link addition and removal on synchronization of an elementary power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 99-107.
    3. G. Filatrella & A. H. Nielsen & N. F. Pedersen, 2008. "Analysis of a power grid using a Kuramoto-like model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 61(4), pages 485-491, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frasca, Mattia & Gambuzza, Lucia Valentina, 2021. "Control of cascading failures in dynamical models of power grids," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    2. Zou, Yanli & Wang, Ruirui & Gao, Zheng, 2020. "Improve synchronizability of a power grid through power allocation and topology adjustment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    3. Ren, Hai-Peng & Gao, Yuan & Huo, Long & Song, Ji-hong & Grebogi, Celso, 2020. "Frequency stability in modern power network from complex network viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Lacerda, Juliana C. & Freitas, Celso & Macau, Elbert E.N., 2022. "Elementary changes in topology and power transmission capacity can induce failures in power grids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    5. Olmi, Simona & Gambuzza, Lucia Valentina & Frasca, Mattia, 2024. "Multilayer control of synchronization and cascading failures in power grids," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    6. Arinushkin, P.A. & Vadivasova, T.E., 2021. "Nonlinear damping effects in a simplified power grid model based on coupled Kuramoto-like oscillators with inertia," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    7. Bayani, Atiyeh & Jafari, Sajad & Azarnoush, Hamed & Nazarimehr, Fahimeh & Boccaletti, Stefano & Perc, Matjaž, 2023. "Explosive synchronization dependence on initial conditions: The minimal Kuramoto model," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Antonio Scala & Sakshi Pahwa & Caterina M. Scoglio, 2015. "Cascade failures and distributed generation in power grids," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 11(1), pages 27-35.
    9. Luo, Hao-jie & Xue, Yu & Huang, Mu-yang & Zhang, Qiang & Zhang, Kun, 2024. "Pattern and waves on 2D-Kuramoto model with many-body interactions," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    10. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    12. Maïzi, Nadia & Mazauric, Vincent & Assoumou, Edi & Bouckaert, Stéphanie & Krakowski, Vincent & Li, Xiang & Wang, Pengbo, 2018. "Maximizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," Applied Energy, Elsevier, vol. 227(C), pages 332-341.
    13. Hao Wu & Xiangyi Meng & Michael M. Danziger & Sean P. Cornelius & Hui Tian & Albert-László Barabási, 2022. "Fragmentation of outage clusters during the recovery of power distribution grids," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    14. Wang, Aijuan & Liao, Xiaofeng & Dong, Tao, 2018. "Finite-time event-triggered synchronization for reaction–diffusion complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 111-120.
    15. Huang, Yubo & Dong, Hongli & Zhang, Weidong & Lu, Junguo, 2019. "Stability analysis of nonlinear oscillator networks based on the mechanism of cascading failures," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 5-15.
    16. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2013. "Understanding the cascading failures in Indian power grids with complex networks theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3273-3280.
    17. Biswas, Dhrubajyoti & Gupta, Sayan, 2024. "Symmetry-breaking higher-order interactions in coupled phase oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    18. Zhang, Kaimin & Bai, Libiao & Xie, Xiaoyan & Wang, Chenshuo, 2023. "Modeling of risk cascading propagation in project portfolio network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    19. Ren, Hai-Peng & Song, Jihong & Yang, Rong & Baptista, Murilo S. & Grebogi, Celso, 2016. "Cascade failure analysis of power grid using new load distribution law and node removal rule," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 239-251.
    20. HyungSeon Oh, 2019. "Analytical solution to swing equations in power grids," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-30, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:126:y:2019:i:c:p:60-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.