IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v123y2019icp35-42.html
   My bibliography  Save this article

Temperature dependence of phase and spike synchronization of neural networks

Author

Listed:
  • Budzinski, R.C.
  • Boaretto, B.R.R.
  • Prado, T.L.
  • Lopes, S.R.

Abstract

We simulate a small-world neural network composed of 2000 thermally sensitive identical Hodgkin–Huxley type neurons investigating the synchronization characteristics as a function of the coupling strength and the temperature of the neurons. The Kuramoto order parameter computed over individual neuron membrane potential signals, and recurrence analysis evaluated from the mean field of the network are used to identify the non-monotonous behavior of the synchronization level as a function of the coupling parameter. We show that moderated high temperatures induce a low variability of the inter-burst intervals of neurons leading to phase synchronization and further increases of temperature result in a low variability of inter-spike intervals leading the network to display spike synchronization.

Suggested Citation

  • Budzinski, R.C. & Boaretto, B.R.R. & Prado, T.L. & Lopes, S.R., 2019. "Temperature dependence of phase and spike synchronization of neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 35-42.
  • Handle: RePEc:eee:chsofr:v:123:y:2019:i:c:p:35-42
    DOI: 10.1016/j.chaos.2019.03.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919301006
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.03.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. E. J. Newman & D. J. Watts, 1999. "Scaling and Percolation in the Small-World Network Model," Working Papers 99-05-034, Santa Fe Institute.
    2. Boaretto, B.R.R. & Budzinski, R.C. & Prado, T.L. & Kurths, J. & Lopes, S.R., 2018. "Suppression of anomalous synchronization and nonstationary behavior of neural network under small-world topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 126-138.
    3. Erick Olivares & Simón Salgado & Jean Paul Maidana & Gaspar Herrera & Matías Campos & Rodolfo Madrid & Patricio Orio, 2015. "TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-17, October.
    4. Steven H. Strogatz, 2001. "Exploring complex networks," Nature, Nature, vol. 410(6825), pages 268-276, March.
    5. Budzinski, R.C. & Boaretto, B.R.R. & Rossi, K.L. & Prado, T.L. & Kurths, J. & Lopes, S.R., 2018. "Nonstationary transition to phase synchronization of neural networks induced by the coupling architecture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 321-334.
    6. Etémé, Armand S. & Tabi, Conrad B. & Mohamadou, Alidou, 2017. "Synchronized nonlinear patterns in electrically coupled Hindmarsh–Rose neural networks with long-range diffusive interactions," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 813-826.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ge, Mengyan & Lu, Lulu & Xu, Ying & Mamatimin, Rozihajim & Pei, Qiming & Jia, Ya, 2020. "Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Floortje Alkemade & Carolina Castaldi, 2005. "Strategies for the Diffusion of Innovations on Social Networks," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 3-23, February.
    2. Li, Chunguang, 2009. "Memorizing morph patterns in small-world neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(2), pages 240-246.
    3. Zengwang Xu & Daniel Sui, 2007. "Small-world characteristics on transportation networks: a perspective from network autocorrelation," Journal of Geographical Systems, Springer, vol. 9(2), pages 189-205, June.
    4. Budzinski, R.C. & Boaretto, B.R.R. & Rossi, K.L. & Prado, T.L. & Kurths, J. & Lopes, S.R., 2018. "Nonstationary transition to phase synchronization of neural networks induced by the coupling architecture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 321-334.
    5. Sinisa Pajevic & Dietmar Plenz, 2009. "Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-20, January.
    6. Emerson, Isaac Arnold & Amala, Arumugam, 2017. "Protein contact maps: A binary depiction of protein 3D structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 782-791.
    7. Ruiz Vargas, E. & Mitchell, D.G.V. & Greening, S.G. & Wahl, L.M., 2014. "Topology of whole-brain functional MRI networks: Improving the truncated scale-free model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 151-158.
    8. Igor Belykh & Mateusz Bocian & Alan R. Champneys & Kevin Daley & Russell Jeter & John H. G. Macdonald & Allan McRobie, 2021. "Emergence of the London Millennium Bridge instability without synchronisation," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    9. Berahmand, Kamal & Bouyer, Asgarali & Samadi, Negin, 2018. "A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 41-54.
    10. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    11. Soh, Harold & Lim, Sonja & Zhang, Tianyou & Fu, Xiuju & Lee, Gary Kee Khoon & Hung, Terence Gih Guang & Di, Pan & Prakasam, Silvester & Wong, Limsoon, 2010. "Weighted complex network analysis of travel routes on the Singapore public transportation system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5852-5863.
    12. Wang, Qingyun & Duan, Zhisheng & Chen, Guanrong & Feng, Zhaosheng, 2008. "Synchronization in a class of weighted complex networks with coupling delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5616-5622.
    13. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    14. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    15. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    16. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    17. Ye, Dan & Yang, Xiang & Su, Lei, 2017. "Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology," Applied Mathematics and Computation, Elsevier, vol. 312(C), pages 36-48.
    18. Dragicevic, Arnaud Z. & Sinclair-Desgagné, Bernard, 2013. "Sustainable network dynamics," Ecological Modelling, Elsevier, vol. 270(C), pages 43-53.
    19. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of multi-stochastic-link complex networks via aperiodically intermittent control with two different switched periods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 20-38.
    20. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:123:y:2019:i:c:p:35-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.