IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v120y2019icp62-66.html
   My bibliography  Save this article

Minimal digital chaotic system

Author

Listed:
  • Nepomuceno, Erivelton G.
  • Lima, Arthur M.
  • Arias-García, Janier
  • Perc, Matjaž
  • Repnik, Robert

Abstract

Over the past few decades, many works have been devoted to designing simple chaotic systems based on analog electronic circuits. However, the same attention is not observed in digital chaotic systems. This paper presents a design of a digital chaotic system using a digit complement. This special case of fixed-point number representation allows us to reduce the silicon area and the number of logic elements to perform the arithmetic operations. The design presents a configurable number of bits, and it is based on the logistic map. The proposed circuit has been implemented on a reconfigurable hardware, FPGA Cyclone V, showing that the number of logic elements has been significantly reduced compared to other works in the literature.

Suggested Citation

  • Nepomuceno, Erivelton G. & Lima, Arthur M. & Arias-García, Janier & Perc, Matjaž & Repnik, Robert, 2019. "Minimal digital chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 62-66.
  • Handle: RePEc:eee:chsofr:v:120:y:2019:i:c:p:62-66
    DOI: 10.1016/j.chaos.2019.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.01.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koshkin, Sergiy & Styers, Taylor, 2017. "From golden to unimodular cryptography," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 208-214.
    2. Peixoto, Márcia L.C. & Nepomuceno, Erivelton G. & Martins, Samir A.M. & Lacerda, Márcio J., 2018. "Computation of the largest positive Lyapunov exponent using rounding mode and recursive least square algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 36-43.
    3. Saha, Rahul & G, Geetha, 2017. "Symmetric random function generator (SRFG): A novel cryptographic primitive for designing fast and robust algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 371-377.
    4. Asgari Chenaghlu, Meysam & Jamali, Shahram & Nikzad Khasmakhi, Narjes, 2016. "A novel keyed parallel hashing scheme based on a new chaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 216-225.
    5. Tchitnga, Robert & Fotsin, Hilaire Bertrand & Nana, Bonaventure & Louodop Fotso, Patrick Hervé & Woafo, Paul, 2012. "Hartley’s oscillator: The simplest chaotic two-component circuit," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 306-313.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xingyuan & Yang, Jingjing & Guan, Nana, 2021. "High-sensitivity image encryption algorithm with random cross diffusion based on dynamically random coupled map lattice model," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Bullini Orlandi, Ludovico & Zardini, Alessandro & Rossignoli, Cecilia, 2021. "Highway to hell: Cultural propensity and digital infrastructure gap as recipe to entrepreneurial death," Journal of Business Research, Elsevier, vol. 123(C), pages 188-195.
    3. Nardo, Lucas G. & Nepomuceno, Erivelton G. & Arias-Garcia, Janier & Butusov, Denis N., 2019. "Image encryption using finite-precision error," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 69-78.
    4. Zheng, Jun & Hu, Hanping & Ming, Hao & Zhang, Yanxia, 2021. "Design of a hybrid model for construction of digital chaos and local synchronization," Applied Mathematics and Computation, Elsevier, vol. 392(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wafo Tekam, Raoul Blaise & Kengne, Jacques & Djuidje Kenmoe, Germaine, 2019. "High frequency Colpitts’ oscillator: A simple configuration for chaos generation," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 351-360.
    2. Tchitnga, R. & Mezatio, B.A. & Fozin, T. Fonzin & Kengne, R. & Louodop Fotso, P.H. & Fomethe, A., 2019. "A novel hyperchaotic three-component oscillator operating at high frequency," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 166-180.
    3. Nardo, Lucas G. & Nepomuceno, Erivelton G. & Arias-Garcia, Janier & Butusov, Denis N., 2019. "Image encryption using finite-precision error," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 69-78.
    4. Njitacke, Z.T. & kengne, J. & Kengne, L. Kamdjeu, 2017. "Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 77-91.
    5. Zhang, Shenghai & Luo, Shaohua & He, Shaobo & Ouakad, Hassen M., 2022. "Analog circuit implementation and adaptive neural backstepping control of a network of four Duffing-type MEMS resonators with mechanical and electrostatic coupling," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    6. Rasool, Masrat & Belhaouari, Samir Brahim, 2023. "From Collatz Conjecture to chaos and hash function," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    7. Minati, Ludovico & Innocenti, Giacomo & Mijatovic, Gorana & Ito, Hiroyuki & Frasca, Mattia, 2022. "Mechanisms of chaos generation in an atypical single-transistor oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    8. Trobia, José & de Souza, Silvio L.T. & dos Santos, Margarete A. & Szezech, José D. & Batista, Antonio M. & Borges, Rafael R. & Pereira, Leandro da S. & Protachevicz, Paulo R. & Caldas, Iberê L. & Iaro, 2022. "On the dynamical behaviour of a glucose-insulin model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Li, Yantao & Li, Xiang, 2016. "Chaotic hash function based on circular shifts with variable parameters," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 639-648.
    10. Zhou, Shuang & Wang, Xingyuan, 2020. "Simple estimation method for the second-largest Lyapunov exponent of chaotic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    11. Pham, Viet–Thanh & Jafari, Sajad & Volos, Christos & Kapitaniak, Tomasz, 2016. "A gallery of chaotic systems with an infinite number of equilibrium points," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 58-63.
    12. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    13. Tutueva, Aleksandra V. & Nepomuceno, Erivelton G. & Karimov, Artur I. & Andreev, Valery S. & Butusov, Denis N., 2020. "Adaptive chaotic maps and their application to pseudo-random numbers generation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:120:y:2019:i:c:p:62-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.