IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v120y2019icp203-212.html
   My bibliography  Save this article

System of fractional differential algebraic equations with applications

Author

Listed:
  • Shiri, B.
  • Baleanu, D.

Abstract

One of the important classes of coupled systems of algebraic, differential and fractional differential equations (CSADFDEs) is fractional differential algebraic equations (FDAEs). The main difference of such systems with other class of CSADFDEs is that their singularity remains constant in an interval. However, complete classifying and analyzing of these systems relay mainly to the concept of the index which we introduce in this paper. For a system of linear differential algebraic equations (DAEs) with constant coefficients, we observe that the solvability depends on the regularity of the corresponding pencils. However, we show that in general, similar properties of DAEs do not hold for FDAEs. In this paper, we introduce some practical applications of systems of FDAEs in physics such as a simple pendulum in a Newtonian fluid and electrical circuit containing a new practical element namely fractors. We obtain the index of introduced systems and discuss the solvability of these systems. We numerically solve the FDAEs of a pendulum in a fluid with three different fractional derivatives (Liouville–Caputo’s definition, Caputo–Fabrizio’s definition and with a definition with Mittag–Leffler kernel) and compare the effect of different fractional derivatives in this modeling. Finally, we solved some existing examples in research and showed the effectiveness and efficiency of the proposed numerical method.

Suggested Citation

  • Shiri, B. & Baleanu, D., 2019. "System of fractional differential algebraic equations with applications," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 203-212.
  • Handle: RePEc:eee:chsofr:v:120:y:2019:i:c:p:203-212
    DOI: 10.1016/j.chaos.2019.01.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.01.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    2. Baleanu, D. & Shiri, B., 2018. "Collocation methods for fractional differential equations involving non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 136-145.
    3. Damarla, Seshu Kumar & Kundu, Madhusree, 2015. "Numerical solution of multi-order fractional differential equations using generalized triangular function operational matrices," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 189-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fateme Ghomanjani & Samad Noeiaghdam, 2021. "Application of Said Ball Curve for Solving Fractional Differential-Algebraic Equations," Mathematics, MDPI, vol. 9(16), pages 1-10, August.
    2. Gong, Zhaohua & Liu, Chongyang & Teo, Kok Lay & Wang, Song & Wu, Yonghong, 2021. "Numerical solution of free final time fractional optimal control problems," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    3. Abdelkawy, M.A. & Lopes, António M. & Babatin, Mohammed M., 2020. "Shifted fractional Jacobi collocation method for solving fractional functional differential equations of variable order," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Alijani, Zahra & Baleanu, Dumitru & Shiri, Babak & Wu, Guo-Cheng, 2020. "Spline collocation methods for systems of fuzzy fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    2. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    3. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    4. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    5. Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.
    6. Balcı, Ercan & Öztürk, İlhan & Kartal, Senol, 2019. "Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 43-51.
    7. Yavuz, Mehmet & Bonyah, Ebenezer, 2019. "New approaches to the fractional dynamics of schistosomiasis disease model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 373-393.
    8. Ariza-Hernandez, Francisco J. & Martin-Alvarez, Luis M. & Arciga-Alejandre, Martin P. & Sanchez-Ortiz, Jorge, 2021. "Bayesian inversion for a fractional Lotka-Volterra model: An application of Canadian lynx vs. snowshoe hares," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    9. Atangana, Abdon, 2018. "Blind in a commutative world: Simple illustrations with functions and chaotic attractors," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 347-363.
    10. Tajani, Asmae & El Alaoui, Fatima-Zahrae & Boutoulout, Ali, 2022. "Regional boundary controllability of semilinear subdiffusion Caputo fractional systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 481-496.
    11. Doungmo Goufo, Emile F. & Mbehou, Mohamed & Kamga Pene, Morgan M., 2018. "A peculiar application of Atangana–Baleanu fractional derivative in neuroscience: Chaotic burst dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 170-176.
    12. Ravichandran, C. & Logeswari, K. & Jarad, Fahd, 2019. "New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 194-200.
    13. Mathale, D. & Doungmo Goufo, Emile F. & Khumalo, M., 2020. "Coexistence of multi-scroll chaotic attractors for fractional systems with exponential law and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    14. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    15. Ghanbari, Behzad & Atangana, Abdon, 2020. "A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    16. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.
    17. Usman, Muhammad & Hamid, Muhammad & Liu, Moubin, 2021. "Novel operational matrices-based finite difference/spectral algorithm for a class of time-fractional Burger equation in multidimensions," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    18. Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
    19. Kumar, Sachin & Pandey, Prashant, 2020. "Quasi wavelet numerical approach of non-linear reaction diffusion and integro reaction-diffusion equation with Atangana–Baleanu time fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    20. Tassaddiq, Asifa, 2019. "MHD flow of a fractional second grade fluid over an inclined heated plate," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 341-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:120:y:2019:i:c:p:203-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.