IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v123y2019icp173-184.html
   My bibliography  Save this article

New results on regional observer-based stabilization for locally Lipchitz nonlinear systems

Author

Listed:
  • Hamid, Syeda Rabiya
  • Nazir, Muhammad Shahid
  • Rehan, Muhammad
  • ur Rashid, Haroon

Abstract

This paper describes the design of a regional observer-based controller for the locally Lipchitz nonlinear systems, which can be employed successfully to attain both monitoring and control of a wide range of systems. An observer-based control approach has been employed to attain advantages of the traditional state feedback along with the state estimation through an observer. A lot of work has been accomplished for the globally Lipchitz nonlinear systems. However, a less conservative continuity, called the generalized ellipsoidal Lipchitz condition, has been applied in this paper to consider the locally Lipchitz systems. This condition is then incorporated to attain convex routines for computing the local controller and observer gains. The focus of the present study is to investigate conditions for simultaneous design of observer and controller under locally Lipchitz nonlinearities for systems with norm-bounded disturbances that not only guarantees the stabilization and true state estimation but also robustness against external perturbations. Furthermore, the decoupling of the observer and controller design conditions has been worked out for obtainment of a simple design method. Since the resultant control approach applies to a general class of systems, it can be straightforwardly employed to the globally Lipschitz nonlinear systems as a specific case. The approach is tested via a chaotic system and simulation results are provided to validate the effectiveness of resultant control schemes for the locally Lipschitz systems.

Suggested Citation

  • Hamid, Syeda Rabiya & Nazir, Muhammad Shahid & Rehan, Muhammad & ur Rashid, Haroon, 2019. "New results on regional observer-based stabilization for locally Lipchitz nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 173-184.
  • Handle: RePEc:eee:chsofr:v:123:y:2019:i:c:p:173-184
    DOI: 10.1016/j.chaos.2019.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919301067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vafamand, Navid & Khorshidi, Shapour & Khayatian, Alireza, 2018. "Secure communication for non-ideal channel via robust TS fuzzy observer-based hyperchaotic synchronization," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 116-124.
    2. Sharma, Vivek & Shukla, Manoj & Sharma, B.B., 2018. "Unknown input observer design for a class of fractional order nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 96-107.
    3. Kocamaz, Uğur Erkin & Cevher, Barış & Uyaroğlu, Yılmaz, 2017. "Control and synchronization of chaos with sliding mode control based on cubic reaching rule," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 92-98.
    4. Che, Yanqiu & Liu, Bei & Li, Huiyan & Lu, Meili & Wang, Jiang & Wei, Xile, 2017. "Robust stabilization control of bifurcations in Hodgkin-Huxley model with aid of unscented Kalman filter," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 92-99.
    5. Singla, Tanu & Parmananda, P. & Rivera, M., 2018. "Stabilizing antiperiodic oscillations in Chua’s circuit using periodic forcing," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 128-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sweetha, S. & Panneerselvam, V. & Tatar, N. & Sakthivel, R., 2023. "Observer-based control for nonlinear neutral type stochastic model with fractional Gaussian noise and input saturation," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parvizian, Majid & Khandani, Khosro, 2021. "Hyperbolic observer design for a class of nonlinear systems," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Li, Mingyue & Chen, Huanzhen & Li, Xiaodi, 2021. "Exponential stability of nonlinear systems involving partial unmeasurable states via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Rocha, Ronilson & Medrano-T, Rene Orlando, 2022. "Chua circuit based on the exponential characteristics of semiconductor devices," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Isao Shoji & Masahiro Nozawa, 2020. "A geometric analysis of nonlinear dynamics and its application to financial time series," Papers 2012.11825, arXiv.org.
    5. Wang, Yang & Li, Huanyun & Guan, Yan & Chen, Mingshu, 2022. "Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    6. J. Humberto Pérez-Cruz, 2018. "Stabilization and Synchronization of Uncertain Zhang System by Means of Robust Adaptive Control," Complexity, Hindawi, vol. 2018, pages 1-19, December.
    7. Cai, Xinshan & Liu, Ling & Wang, Yaoyu & Liu, Chongxin, 2021. "A 3D chaotic system with piece-wise lines shape non-hyperbolic equilibria and its predefined-time control," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    8. You, Xingxing & Shi, Mingyang & Guo, Bin & Zhu, Yuqi & Lai, Wuxing & Dian, Songyi & Liu, Kai, 2022. "Event-triggered adaptive fuzzy tracking control for a class of fractional-order uncertain nonlinear systems with external disturbance," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    9. Borah, Manashita & Das, Debanita & Gayan, Antara & Fenton, Flavio & Cherry, Elizabeth, 2021. "Control and anticontrol of chaos in fractional-order models of Diabetes, HIV, Dengue, Migraine, Parkinson's and Ebola virus diseases," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Weiqiu Pan & Tianzeng Li & Muhammad Sajid & Safdar Ali & Lingping Pu, 2022. "Parameter Identification and the Finite-Time Combination–Combination Synchronization of Fractional-Order Chaotic Systems with Different Structures under Multiple Stochastic Disturbances," Mathematics, MDPI, vol. 10(5), pages 1-26, February.
    11. Sangpet, Teerawat & Kuntanapreeda, Suwat, 2020. "Finite-time synchronization of hyperchaotic systems based on feedback passivation," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    12. Huan, Mingchen & Li, Chuandong, 2022. "Stability analysis of state-dependent impulsive systems via a new two-sided looped functional," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    13. Chenchen Peng & Haiyi Yang & Anqing Yang & Ling Ren, 2024. "A New Observer Design for the Joint Estimation of States and Unknown Inputs for a Class of Nonlinear Fractional-Order Systems," Mathematics, MDPI, vol. 12(8), pages 1-12, April.
    14. Changjin Xu & Peiluan Li & Maoxin Liao & Zixin Liu & Qimei Xiao & Shuai Yuan, 2019. "Control Scheme for a Fractional-Order Chaotic Genesio-Tesi Model," Complexity, Hindawi, vol. 2019, pages 1-15, September.
    15. Mahmoud, Emad E. & AL-Harthi, Bushra H., 2020. "A hyperchaotic detuned laser model with an infinite number of equilibria existing on a plane and its modified complex phase synchronization with time lag," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    16. Fei Yu & Li Liu & Binyong He & Yuanyuan Huang & Changqiong Shi & Shuo Cai & Yun Song & Sichun Du & Qiuzhen Wan, 2019. "Analysis and FPGA Realization of a Novel 5D Hyperchaotic Four-Wing Memristive System, Active Control Synchronization, and Secure Communication Application," Complexity, Hindawi, vol. 2019, pages 1-18, November.
    17. Anand, Pallov & Sharma, Bharat Bhushan, 2020. "Simplified synchronizability scheme for a class of nonlinear systems connected in chain configuration using contraction," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Fu, Shihui & Liu, Yuan & Ma, Huizhen & Du, Ying, 2020. "Control chaos to different stable states for a piecewise linear circuit system by a simple linear control," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    19. Anguiano-Gijón, Carlos Alberto & Muñoz-Vázquez, Aldo Jonathan & Sánchez-Torres, Juan Diego & Romero-Galván, Gerardo & Martínez-Reyes, Fernando, 2019. "On predefined-time synchronisation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 172-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:123:y:2019:i:c:p:173-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.