IDEAS home Printed from https://ideas.repec.org/a/eee/bushor/v61y2018i3p397-407.html
   My bibliography  Save this article

A strategic approach to workforce analytics: Integrating science and agility

Author

Listed:
  • McIver, Derrick
  • Lengnick-Hall, Mark L.
  • Lengnick-Hall, Cynthia A.

Abstract

Workforce analytics is a major emerging trend in human resource management. Yet, despite the enthusiasm, there exists a misunderstanding of how organizations can successfully use workforce analytics to achieve important organizational outcomes. This article proposes ways to overcome this execution dilemma and achieve organizational success with workforce analytics through the integration of agile development with scientific research. We use a number of company examples to outline five key parts of an agile workforce analytics process: (1) prioritizing issues, (2) integrating deductive and inductive approaches, (3) preparing and validating data, (4) applying multiple methods in concert to support decisions, and (5) transforming insight into action to improve business outcomes.

Suggested Citation

  • McIver, Derrick & Lengnick-Hall, Mark L. & Lengnick-Hall, Cynthia A., 2018. "A strategic approach to workforce analytics: Integrating science and agility," Business Horizons, Elsevier, vol. 61(3), pages 397-407.
  • Handle: RePEc:eee:bushor:v:61:y:2018:i:3:p:397-407
    DOI: 10.1016/j.bushor.2018.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0007681318300053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.bushor.2018.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Earley, Christine E., 2015. "Data analytics in auditing: Opportunities and challenges," Business Horizons, Elsevier, vol. 58(5), pages 493-500.
    2. Ward, Michael J. & Marsolo, Keith A. & Froehle, Craig M., 2014. "Applications of business analytics in healthcare," Business Horizons, Elsevier, vol. 57(5), pages 571-582.
    3. Souza, Gilvan C., 2014. "Supply chain analytics," Business Horizons, Elsevier, vol. 57(5), pages 595-605.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamilton, R.H. & Sodeman, William A., 2020. "The questions we ask: Opportunities and challenges for using big data analytics to strategically manage human capital resources," Business Horizons, Elsevier, vol. 63(1), pages 85-95.
    2. Felix Wirges & Anne-Katrin Neyer, 2023. "Towards a process-oriented understanding of HR analytics: implementation and application," Review of Managerial Science, Springer, vol. 17(6), pages 2077-2108, August.
    3. Pinho, Celso R.A. & Pinho, Maria Luiza C.A. & Deligonul, Seyda Z. & Tamer Cavusgil, S., 2022. "The agility construct in the literature: Conceptualization and bibliometric assessment," Journal of Business Research, Elsevier, vol. 153(C), pages 517-532.
    4. Marian Pompiliu Cristescu & Dumitru Alexandru Mara & Raluca Andreea Nerișanu & Renate-Martina Polder, 2022. "How Hr Analytics Benefits Companies," INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE "HUMAN RESOURCE MANAGEMENT", University of Economics - Varna, issue 1, pages 83-92.
    5. Agag, Gomaa & Shehawy, Yasser Moustafa & Almoraish, Ahmed & Eid, Riyad & Chaib Lababdi, Houyem & Gherissi Labben, Thouraya & Abdo, Said Shabban, 2024. "Understanding the relationship between marketing analytics, customer agility, and customer satisfaction: A longitudinal perspective," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    6. Anna Rogozinska-Pawelczyk, 2022. "The Manager as an Organisation Agent during the Fourth Industrial Revolution," European Research Studies Journal, European Research Studies Journal, vol. 0(2), pages 509-529.
    7. Wang, Lijun & Zhou, Yu & Sanders, Karin & Marler, Janet H. & Zou, Yunqing, 2024. "Determinants of effective HR analytics Implementation: An In-Depth review and a dynamic framework for future research," Journal of Business Research, Elsevier, vol. 170(C).
    8. José Romualdo Costa Filho & Renato Penha & Luciano Ferreira Silva & Flavio Santino Bizarrias, 2022. "Competencies for Managing Activities in Agile Projects," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 431-452, December.
    9. Eduard BUDACU & Paul POCATILU, 2018. "Real Time Agile Metrics for Measuring Team Performance," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 22(4), pages 70-79.
    10. Lungu Miruna Florina, 2020. "Factors determining company performance in the IT industry," Management & Marketing, Sciendo, vol. 15(1), pages 59-77, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Abdul & Mancha, Ruben & Pachamanova, Dessislava, 2018. "Correcting analytics maturity myopia," Business Horizons, Elsevier, vol. 61(2), pages 211-219.
    2. Pham, Xuan & Stack, Martin, 2018. "How data analytics is transforming agriculture," Business Horizons, Elsevier, vol. 61(1), pages 125-133.
    3. Gambetta, Nicolás & García-Benau, María Antonia & Zorio-Grima, Ana, 2016. "Data analytics in banks' audit: The case of loan loss provisions in Uruguay," Journal of Business Research, Elsevier, vol. 69(11), pages 4793-4797.
    4. Leonardo de Assis Santos & Leonardo Marques, 2022. "Big data analytics for supply chain risk management: research opportunities at process crossroads," Post-Print hal-03766121, HAL.
    5. Benjamin T. Hazen & Joseph B. Skipper & Christopher A. Boone & Raymond R. Hill, 2018. "Back in business: operations research in support of big data analytics for operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 201-211, November.
    6. Farheen Naz & Rohit Agrawal & Anil Kumar & Angappa Gunasekaran & Abhijit Majumdar & Sunil Luthra, 2022. "Reviewing the applications of artificial intelligence in sustainable supply chains: Exploring research propositions for future directions," Business Strategy and the Environment, Wiley Blackwell, vol. 31(5), pages 2400-2423, July.
    7. Elena PUICA, 2021. "A Classification Predictive Model to Analyze the Supply Chain Strategies," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 25(2), pages 29-39.
    8. Federica De Santis, 2018. "Big Data e revisione contabile: uno studio esplorativo nel contesto italiano," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2018(2), pages 129-154.
    9. Mihai-Răzvan Sanda & Cristina-Petrina Trincu-Drăgușin & Costin-Daniel Avram, 2022. "The Alignment of INTOSAI and Romanian Public External Audit Standards, Guidelines and Institutional Focus to the Data Driven Context," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 418-428, Decembrie.
    10. Vitali, Sonia & Giuliani, Marco, 2024. "Emerging digital technologies and auditing firms: Opportunities and challenges," International Journal of Accounting Information Systems, Elsevier, vol. 53(C).
    11. Ayan Chatterjee & Debmallya Chatterjee, 2024. "A Journey of Business Analytics in Improving Supply Chain Performance: A Systematic Review of Literature," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 49(2), pages 337-361, May.
    12. Tiwari, Manisha & Bryde, David J. & Stavropoulou, Foteini & Dubey, Rameshwar & Kumari, Sushma & Foropon, Cyril, 2024. "Modelling supply chain Visibility, digital Technologies, environmental dynamism and healthcare supply chain Resilience: An organisation information processing theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    13. Tino T. Herden & Steffen Bunzel, 2018. "Archetypes of Supply Chain Analytics Initiatives—An Exploratory Study," Logistics, MDPI, vol. 2(2), pages 1-20, May.
    14. Tino T. Herden, 2020. "Explaining the competitive advantage generated from Analytics with the knowledge-based view: the example of Logistics and Supply Chain Management," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 163-214, April.
    15. Riccardo Camilli & Hira Salah ud din Khan, 2023. "Book Review," FINANCIAL REPORTING, FrancoAngeli Editore, vol. 2023(2), pages 137-144.
    16. Victoria STANCIU & Crina SERIA, 2019. "Insights on the New Coordinates in Internal Audit," The Audit Financiar journal, Chamber of Financial Auditors of Romania, vol. 17(154), pages 261-261.
    17. Spreitzenbarth, Jan & Stuckenschmidt, Heiner & Bode, Christoph, 2021. "The state of artificial intelligence: Procurement versus sales and marketing," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Ringle, Christian M. & Blecker, Thorsten (ed.), Adapting to the Future: How Digitalization Shapes Sustainable Logistics and Resilient Supply Chain Management. Proceedings of the Hamburg Internationa, volume 31, pages 223-243, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    18. Andrea Ko & Saira Gillani, 2020. "A Research Review and Taxonomy Development for Decision Support and Business Analytics Using Semantic Text Mining," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(01), pages 97-126, January.
    19. Nathanael Betti & Steven DeSimone & Joy Gray, 2022. "The impacts of the use of data analytics and the performance of consulting activities on perceived internal audit quality," Working Papers 2202, College of the Holy Cross, Department of Economics.
    20. Venkatesh Mani & Catarina Delgado & Benjamin T. Hazen & Purvishkumar Patel, 2017. "Mitigating Supply Chain Risk via Sustainability Using Big Data Analytics: Evidence from the Manufacturing Supply Chain," Sustainability, MDPI, vol. 9(4), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:bushor:v:61:y:2018:i:3:p:397-407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/bushor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.