IDEAS home Printed from https://ideas.repec.org/a/eee/beexfi/v30y2021ics2214635021000137.html
   My bibliography  Save this article

Herding behaviour and price convergence clubs in cryptocurrencies during bull and bear markets

Author

Listed:
  • Papadamou, Stephanos
  • Kyriazis, Nikolaos A.
  • Tzeremes, Panayiotis
  • Corbet, Shaen

Abstract

This paper sets out to explore whether convergence and herding phenomena exist for digital currencies. Daily data cover a large spectrum of cryptocurrencies in separate bull and bear periods. Empirical estimations for detecting club convergence and clustering are performed by the methodology proposed by Phillips and Shu (2007, 2009). Econometric outcomes reveal preliminary evidence of powerful herding behaviour. The lowest of large-cap digital currencies attract mainly cryptocurrencies which are about in the middle of the large-cap and medium-cap categories whereas the highest-cap cryptocurrencies are parts of convergence clubs with mostly large-cap or purely medium-cap digital currencies during bear markets. Notably, segmentation is higher during bear markets as clusters are formed around more numerous cryptocurrencies than during bull markets. Convergence is stronger during flourishing periods. Secondary herding is also realized among pairs of clubs. Our findings enable investors to better diversify their portfolios and ameliorate their risk-return trade-off during extreme events.

Suggested Citation

  • Papadamou, Stephanos & Kyriazis, Nikolaos A. & Tzeremes, Panayiotis & Corbet, Shaen, 2021. "Herding behaviour and price convergence clubs in cryptocurrencies during bull and bear markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 30(C).
  • Handle: RePEc:eee:beexfi:v:30:y:2021:i:c:s2214635021000137
    DOI: 10.1016/j.jbef.2021.100469
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2214635021000137
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jbef.2021.100469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Esin Cakan & Rıza Demirer & Rangan Gupta & Hardik A. Marfatia, 2019. "Oil speculation and herding behavior in emerging stock markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 43(1), pages 44-56, January.
    2. Peter C. B. Phillips & Donggyu Sul, 2009. "Economic transition and growth," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(7), pages 1153-1185, November.
    3. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    4. da Gama Silva, Paulo Vitor Jordão & Klotzle, Marcelo Cabus & Pinto, Antonio Carlos Figueiredo & Gomes, Leonardo Lima, 2019. "Herding behavior and contagion in the cryptocurrency market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 22(C), pages 41-50.
    5. Cai, Fang & Han, Song & Li, Dan & Li, Yi, 2019. "Institutional herding and its price impact: Evidence from the corporate bond market," Journal of Financial Economics, Elsevier, vol. 131(1), pages 139-167.
    6. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    7. Michael McAleer & Kim Radalj, 2013. "Herding, Information Cascades and Volatility Spillovers in Futures Markets," Journal of Reviews on Global Economics, Lifescience Global, vol. 2, pages 307-329.
    8. Chang, Eric C. & Cheng, Joseph W. & Khorana, Ajay, 2000. "An examination of herd behavior in equity markets: An international perspective," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1651-1679, October.
    9. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    10. Joachim Schnurbus & Harry Haupt & Verena Meier, 2017. "Economic Transition and Growth: A Replication," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(5), pages 1039-1042, August.
    11. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    12. Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
    13. Hwang, Soosung & Salmon, Mark, 2004. "Market stress and herding," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 585-616, September.
    14. Rainer Böhme & Nicolas Christin & Benjamin Edelman & Tyler Moore, 2015. "Bitcoin: Economics, Technology, and Governance," Journal of Economic Perspectives, American Economic Association, vol. 29(2), pages 213-238, Spring.
    15. Tiwari, Aviral Kumar & Jana, R.K. & Das, Debojyoti & Roubaud, David, 2018. "Informational efficiency of Bitcoin—An extension," Economics Letters, Elsevier, vol. 163(C), pages 106-109.
    16. Regis, Paulo José & Cuestas, Juan Carlos & Chen, Yang, 2015. "Corporate tax in Europe: Towards convergence?," Economics Letters, Elsevier, vol. 134(C), pages 9-12.
    17. Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Herding behaviour in cryptocurrencies," Finance Research Letters, Elsevier, vol. 29(C), pages 216-221.
    18. Chiang, Thomas C. & Zheng, Dazhi, 2010. "An empirical analysis of herd behavior in global stock markets," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1911-1921, August.
    19. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    20. Riadh Abed & Amna Zardoub, 2019. "On the co-movements among gold and other financial markets: a multivariate time-varying asymmetric approach," International Economics and Economic Policy, Springer, vol. 16(4), pages 701-719, October.
    21. Stavroyiannis, Stavros & Babalos, Vassilios, 2019. "Herding behavior in cryptocurrencies revisited: Novel evidence from a TVP model," Journal of Behavioral and Experimental Finance, Elsevier, vol. 22(C), pages 57-63.
    22. Gong, Pu & Dai, Jun, 2017. "Monetary policy, exchange rate fluctuation, and herding behavior in the stock market," Journal of Business Research, Elsevier, vol. 76(C), pages 34-43.
    23. Joscha Beckmann & Robert Czudaj, 2013. "Oil and gold price dynamics in a multivariate cointegration framework," International Economics and Economic Policy, Springer, vol. 10(3), pages 453-468, September.
    24. Demirer, Riza & Kutan, Ali M. & Chen, Chun-Da, 2010. "Do investors herd in emerging stock markets?: Evidence from the Taiwanese market," Journal of Economic Behavior & Organization, Elsevier, vol. 76(2), pages 283-295, November.
    25. Awaworyi Churchill, Sefa & Inekwe, John & Ivanovski, Kris, 2018. "House price convergence: Evidence from Australian cities," Economics Letters, Elsevier, vol. 170(C), pages 88-90.
    26. Spencer Wheatley & Didier Sornette & Tobias Huber & Max Reppen & Robert N. Gantner, 2018. "Are Bitcoin Bubbles Predictable? Combining a Generalized Metcalfe's Law and the LPPLS Model," Swiss Finance Institute Research Paper Series 18-22, Swiss Finance Institute, revised Mar 2018.
    27. Galariotis, Emilios C. & Krokida, Styliani-Iris & Spyrou, Spyros I., 2016. "Bond market investor herding: Evidence from the European financial crisis," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 367-375.
    28. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    29. BenMabrouk, Houda & Litimi, Houda, 2018. "Cross herding between American industries and the oil market," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 196-205.
    30. Kallinterakis, Vasileios & Wang, Ying, 2019. "Do investors herd in cryptocurrencies – and why?," Research in International Business and Finance, Elsevier, vol. 50(C), pages 240-245.
    31. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    32. Spencer Wheatley & Didier Sornette & Tobias Huber & Max Reppen & Robert N. Gantner, 2018. "Are Bitcoin Bubbles Predictable? Combining a Generalized Metcalfe's Law and the LPPLS Model," Papers 1803.05663, arXiv.org.
    33. Robert J. Shiller, 2003. "From Efficient Markets Theory to Behavioral Finance," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 83-104, Winter.
    34. Chaim, Pedro & Laurini, Márcio P., 2018. "Volatility and return jumps in bitcoin," Economics Letters, Elsevier, vol. 173(C), pages 158-163.
    35. Vidal-Tomás, David & Ibáñez, Ana M. & Farinós, José E., 2019. "Herding in the cryptocurrency market: CSSD and CSAD approaches," Finance Research Letters, Elsevier, vol. 30(C), pages 181-186.
    36. Beneki, Christina & Koulis, Alexandros & Kyriazis, Nikolaos A. & Papadamou, Stephanos, 2019. "Investigating volatility transmission and hedging properties between Bitcoin and Ethereum," Research in International Business and Finance, Elsevier, vol. 48(C), pages 219-227.
    37. Spyros Spyrou, 2013. "Herding in financial markets: a review of the literature," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 5(2), pages 175-194, November.
    38. Richard H. Thaler, 2016. "Behavioral Economics: Past, Present, and Future," American Economic Review, American Economic Association, vol. 106(7), pages 1577-1600, July.
    39. Sowmya Subramaniam & Madhumita Chakraborty, 2020. "Investor Attention and Cryptocurrency Returns: Evidence from Quantile Causality Approach," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 21(1), pages 103-115, January.
    40. Tao Chen, 2020. "Country herding in the global market," Journal of Behavioral Finance, Taylor & Francis Journals, vol. 21(2), pages 174-185, April.
    41. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    42. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    43. Babalos, Vassilios & Balcilar, Mehmet & Gupta, Rangan, 2015. "Herding behavior in real estate markets: Novel evidence from a Markov-switching model," Journal of Behavioral and Experimental Finance, Elsevier, vol. 8(C), pages 40-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyriazis, Nikolaos A. & Papadamou, Stephanos & Tzeremes, Panayiotis, 2023. "Are benchmark stock indices, precious metals or cryptocurrencies efficient hedges against crises?," Economic Modelling, Elsevier, vol. 128(C).
    2. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    3. Kyriazis, Nikolaos & Corbet, Shaen, 2024. "Evaluating the dynamic connectedness of financial assets and bank indices during black-swan events: A Quantile-VAR approach," Energy Economics, Elsevier, vol. 131(C).
    4. Yousaf, Imran & Yarovaya, Larisa, 2022. "Herding behavior in conventional cryptocurrency market, non-fungible tokens, and DeFi assets," Finance Research Letters, Elsevier, vol. 50(C).
    5. Tong, Zezheng & Goodell, John W. & Shen, Dehua, 2022. "Assessing causal relationships between cryptocurrencies and investor attention: New results from transfer entropy methodology," Finance Research Letters, Elsevier, vol. 50(C).
    6. Kyriazis, Nikolaos & Papadamou, Stephanos & Tzeremes, Panayiotis & Corbet, Shaen, 2023. "The differential influence of social media sentiment on cryptocurrency returns and volatility during COVID-19," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 307-317.
    7. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    8. Mamidala, Vasanthi & Kumari, Pooja, 2023. "Investigating herding severity in different NFT categories," Finance Research Letters, Elsevier, vol. 58(PB).
    9. Tang, Mengxuan & Hu, Yang & Corbet, Shaen & Hou, Yang (Greg) & Oxley, Les, 2024. "Fintech, bank diversification and liquidity: Evidence from China," Research in International Business and Finance, Elsevier, vol. 67(PA).
    10. Chowdhury, Md Iftekhar Hasan & Hasan, Mudassar & Bouri, Elie & Tang, Yayan, 2024. "Emotional spillovers in the cryptocurrency market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    11. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    12. Mohamad, Azhar & Stavroyiannis, Stavros, 2022. "Do birds of a feather flock together? Evidence from time-varying herding behaviour of bitcoin and foreign exchange majors during Covid-19," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    13. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    14. Siniša Bogdan & Natali Suštar & Bojana Olgić Draženović, 2022. "Herding Behavior in Developed, Emerging, and Frontier European Stock Markets during COVID-19 Pandemic," JRFM, MDPI, vol. 15(9), pages 1-12, September.
    15. Ozkan Haykir & Ibrahim Yagli, 2022. "Speculative bubbles and herding in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-33, December.
    16. Shaen Corbet & Les Oxley, 2023. "Investigating the Academic Response to Cryptocurrencies: Insights from Research Diversification as Separated by Journal Ranking," Review of Corporate Finance, now publishers, vol. 3(4), pages 487-528, September.
    17. Mohamad, Azhar, 2022. "Safe flight to which haven when Russia invades Ukraine? A 48-hour story," Economics Letters, Elsevier, vol. 216(C).
    18. Kyriazis, Nikolaos & Papadamou, Stephanos & Tzeremes, Panayiotis & Corbet, Shaen, 2023. "Can cryptocurrencies provide a viable hedging mechanism for benchmark index investors?," Research in International Business and Finance, Elsevier, vol. 64(C).
    19. Gemayel, Roland & Preda, Alex, 2024. "Herding in the cryptocurrency market: A transaction-level analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    20. Kyriazis, Nikolaos & Papadamou, Stephanos & Tzeremes, Panayiotis & Corbet, Shaen, 2024. "Quantifying spillovers and connectedness among commodities and cryptocurrencies: Evidence from a Quantile-VAR analysis," Journal of Commodity Markets, Elsevier, vol. 33(C).
    21. Yongzhi Gong & Xiaofei Tang & En-Chung Chang, 2023. "Group norms and policy norms trigger different autonomous motivations for Chinese investors in cryptocurrency investment," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    22. Scharnowski, Stefan & Shi, Yanghua, 2024. "Intraday herding and attention around the clock," Journal of Behavioral and Experimental Finance, Elsevier, vol. 41(C).
    23. Nikolaos A. Kyriazis, 2021. "The Nexus of Sophisticated Digital Assets with Economic Policy Uncertainty: A Survey of Empirical Findings and an Empirical Investigation," Sustainability, MDPI, vol. 13(10), pages 1-25, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    2. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    3. Vidal-Tomás, David, 2021. "The entry and exit dynamics of the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 58(C).
    4. Zhao, Yuan & Liu, Nan & Li, Wanpeng, 2022. "Industry herding in crypto assets," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Syed Riaz Mahmood Ali, 2022. "Herding in different states and terms: evidence from the cryptocurrency market," Journal of Asset Management, Palgrave Macmillan, vol. 23(4), pages 322-336, July.
    6. Ozkan Haykir & Ibrahim Yagli, 2022. "Speculative bubbles and herding in cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-33, December.
    7. Yarovaya, Larisa & Matkovskyy, Roman & Jalan, Akanksha, 2021. "The effects of a “black swan” event (COVID-19) on herding behavior in cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 75(C).
    8. Kyriazis, Nikolaos & Papadamou, Stephanos & Corbet, Shaen, 2020. "A systematic review of the bubble dynamics of cryptocurrency prices," Research in International Business and Finance, Elsevier, vol. 54(C).
    9. Youssef, Mouna & Waked, Sami Sobhi, 2022. "Herding behavior in the cryptocurrency market during COVID-19 pandemic: The role of media coverage," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    10. N. Blasco & P. Corredor & N. Satrústegui, 2022. "The witching week of herding on bitcoin exchanges," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-18, December.
    11. Helder Miguel Correia Virtuoso Sebastião & Paulo José Osório Rupino Da Cunha & Pedro Manuel Cortesão Godinho, 2021. "Cryptocurrencies and blockchain. Overview and future perspectives," International Journal of Economics and Business Research, Inderscience Enterprises Ltd, vol. 21(3), pages 305-342.
    12. Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
    13. Khanh Hoang & Cuong C. Nguyen & Kongchheng Poch & Thang X. Nguyen, 2020. "Does Bitcoin Hedge Commodity Uncertainty?," JRFM, MDPI, vol. 13(6), pages 1-14, June.
    14. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    15. Coskun, Esra Alp & Lau, Chi Keung Marco & Kahyaoglu, Hakan, 2020. "Uncertainty and herding behavior: evidence from cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 54(C).
    16. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    17. Jia, Boxiang & Shen, Dehua & Zhang, Wei, 2022. "Extreme sentiment and herding: Evidence from the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 63(C).
    18. Vidal-Tomás, David & Ibáñez, Ana M. & Farinós, José E., 2019. "Herding in the cryptocurrency market: CSSD and CSAD approaches," Finance Research Letters, Elsevier, vol. 30(C), pages 181-186.
    19. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    20. Ren, Boru & Lucey, Brian, 2023. "Herding in the Chinese renewable energy market: Evidence from a bootstrapping time-varying coefficient autoregressive model," Energy Economics, Elsevier, vol. 119(C).

    More about this item

    Keywords

    Cryptocurrency; Convergence; Herding; Bull market; Bear market;
    All these keywords.

    JEL classification:

    • F3 - International Economics - - International Finance
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:beexfi:v:30:y:2021:i:c:s2214635021000137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-behavioral-and-experimental-finance .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.