IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp458-466.html
   My bibliography  Save this article

The potential role of data-centres in enabling investment in geothermal energy

Author

Listed:
  • Kaniyal, Ashok A.
  • Nathan, Graham J.
  • Pincus, Jonathan J.

Abstract

A techno-economic analysis is presented, of the potential for data-centres and fibre optic networks to drive investment in geothermal resources. The concept is attractive because of data-centres’ stable demand for electricity and refrigeration at a scale of <5MWe, corresponding to the output of a single well doublet; because the cost of establishing a fibre optic link is an order of magnitude less than augmenting an electricity transmission network; and because it offers an opportunity for geothermal systems to compete with the retail price of electricity. A comparison of energy delivery outcomes was performed for both engineered geothermal systems (EGS) and hot sedimentary aquifer (HSA) reservoirs to identify the minimum conditions that could make the concept economically attractive. For the high temperature EGS, a single and dual pressure binary organic Rankine cycle (EGS-ORC, EGS-2×ORC), a single stage flash (EGS-flash) and a hybrid flash-binary system (EGS-hybrid) were studied. The HSA system investigated the direct use (HSA-DU) of the geo-fluid in an absorption chiller for refrigeration and the use of coincidental natural gas resources to deliver electricity via an internal combustion engine. The technical performance of these systems was assessed for a range of well-head pressure (EGS only) and geo-fluid flow rate scenarios. The economic performance of the combined set of investments in optical fibre and energy infrastructure was examined by estimating the expected internal rate of return (E[IRR]). The HSA-DU option yielded an E[IRR] of 14%, following the installation of energy capacity equivalent to the output of one well-doublet assuming the displacement of the Australian retail price of electricity; and 12% for the US retail price. In comparison, the EGS-hybrid was found to have an E[IRR] of 8%, if the Australian retail price were displaced and 4% if the US retail price were displaced. The EGS-flash, ORC and 2×ORC scenarios were found to be progressively less attractive than the EGS-hybrid. To identify the conditions under which the concept could satisfy commercial hurdle rates, the sensitivity of the E[IRR] was investigated for the cost of an optical fibre link; the EGS resource depth; the retail price of electricity displaced; and a data-centres’ energy consumption profile. Credits for CO2 emissions abatement at $23/ton were found to have only a marginal influence on the economic performance of the EGS and HSA scenarios examined.

Suggested Citation

  • Kaniyal, Ashok A. & Nathan, Graham J. & Pincus, Jonathan J., 2012. "The potential role of data-centres in enabling investment in geothermal energy," Applied Energy, Elsevier, vol. 98(C), pages 458-466.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:458-466
    DOI: 10.1016/j.apenergy.2012.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912002954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Domenico Giardini, 2009. "Geothermal quake risks must be faced," Nature, Nature, vol. 462(7275), pages 848-849, December.
    2. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    3. Kanoğlu, Mehmet & Çengel, Yunus A, 1999. "Economic evaluation of geothermal power generation, heating, and cooling," Energy, Elsevier, vol. 24(6), pages 501-509.
    4. Shaopeng Huang & Jiaqi Liu, 2010. "Geothermal energy stuck between a rock and a hot place," Nature, Nature, vol. 463(7279), pages 293-293, January.
    5. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    6. Liu, Bo-Tau & Chien, Kuo-Hsiang & Wang, Chi-Chuan, 2004. "Effect of working fluids on organic Rankine cycle for waste heat recovery," Energy, Elsevier, vol. 29(8), pages 1207-1217.
    7. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniilidis, Alexandros & Saeid, Sanaz & Doonechaly, Nima Gholizadeh, 2021. "The fault plane as the main fluid pathway: Geothermal field development options under subsurface and operational uncertainty," Renewable Energy, Elsevier, vol. 171(C), pages 927-946.
    2. Siriwardana, Jayantha & Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Potential of air-side economizers for data center cooling: A case study for key Australian cities," Applied Energy, Elsevier, vol. 104(C), pages 207-219.
    3. Wang, Fu & Deng, Shuai & Zhao, Jun & Wang, Junyao & Sun, Taiwei & Yan, Jinyue, 2017. "Performance and economic assessments of integrating geothermal energy into coal-fired power plant with CO2 capture," Energy, Elsevier, vol. 119(C), pages 278-287.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    2. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    3. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    4. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    5. Xue, Xiaodi & Guo, Cong & Du, Xiaoze & Yang, Lijun & Yang, Yongping, 2015. "Thermodynamic analysis and optimization of a two-stage organic Rankine cycle for liquefied natural gas cryogenic exergy recovery," Energy, Elsevier, vol. 83(C), pages 778-787.
    6. Li, Tailu & Fu, Wencheng & Zhu, Jialing, 2014. "An integrated optimization for organic Rankine cycle based on entransy theory and thermodynamics," Energy, Elsevier, vol. 72(C), pages 561-573.
    7. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    8. Choi, Byung Chul & Kim, Young Min, 2013. "Thermodynamic analysis of a dual loop heat recovery system with trilateral cycle applied to exhaust gases of internal combustion engine for propulsion of the 6800 TEU container ship," Energy, Elsevier, vol. 58(C), pages 404-416.
    9. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.
    10. Abbas, Tauqeer & Ahmed Bazmi, Aqeel & Waheed Bhutto, Abdul & Zahedi, Gholamreza, 2014. "Greener energy: Issues and challenges for Pakistan-geothermal energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 258-269.
    11. Li, Jing & Alvi, Jahan Zeb & Pei, Gang & Su, Yuehong & Li, Pengcheng & Gao, Guangtao & Ji, Jie, 2016. "Modelling of organic Rankine cycle efficiency with respect to the equivalent hot side temperature," Energy, Elsevier, vol. 115(P1), pages 668-683.
    12. Liu, Chao & He, Chao & Gao, Hong & Xie, Hui & Li, Yourong & Wu, Shuangying & Xu, Jinliang, 2013. "The environmental impact of organic Rankine cycle for waste heat recovery through life-cycle assessment," Energy, Elsevier, vol. 56(C), pages 144-154.
    13. Coskun, C. & Oktay, Z. & Dincer, I., 2011. "Modified exergoeconomic modeling of geothermal power plants," Energy, Elsevier, vol. 36(11), pages 6358-6366.
    14. Cho, Soo-Yong & Cho, Chong-Hyun, 2015. "An experimental study on the organic Rankine cycle to determine as to how efficiently utilize fluctuating thermal energy," Renewable Energy, Elsevier, vol. 80(C), pages 73-79.
    15. Cho, Soo-Yong & Cho, Chong-Hyun & Choi, Sang-Kyu, 2015. "Experiment and cycle analysis on a partially admitted axial-type turbine used in the organic Rankine cycle," Energy, Elsevier, vol. 90(P1), pages 643-651.
    16. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    17. Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
    18. Hong Gao & Chao Liu & Chao He & Xiaoxiao Xu & Shuangying Wu & Yourong Li, 2012. "Performance Analysis and Working Fluid Selection of a Supercritical Organic Rankine Cycle for Low Grade Waste Heat Recovery," Energies, MDPI, vol. 5(9), pages 1-15, August.
    19. Laveet Kumar & Md. Shouquat Hossain & Mamdouh El Haj Assad & Mansoor Urf Manoo, 2022. "Technological Advancements and Challenges of Geothermal Energy Systems: A Comprehensive Review," Energies, MDPI, vol. 15(23), pages 1-18, November.
    20. Zhang, Xinxin & Li, Yang, 2023. "An examination of super dry working fluids used in regenerative organic Rankine cycles," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:458-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.