IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp433-440.html
   My bibliography  Save this article

Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production

Author

Listed:
  • Zhou, Wenguang
  • Li, Yecong
  • Min, Min
  • Hu, Bing
  • Zhang, Hong
  • Ma, Xiaochen
  • Li, Liang
  • Cheng, Yanling
  • Chen, Paul
  • Ruan, Roger

Abstract

Using wastewater to grow algae is probably the most promising route to reduce production costs associated with nutrients and water. In this study, a newly isolated facultative heterotrophic freshwater microalgae strain, Auxenochlorella protothecoides UMN280, was examined for algal growth, wastewater nutrient removal efficiency, and lipid accumulation in batch and semi-continuous cultivation with various hydraulic retention time using concentrated municipal wastewater (CMW) as cultivation media. The results of the 6day batch cultivation showed that the maximal removal efficiencies for total nitrogen, total phosphorus, chemical oxygen demand (COD) and total organic carbon (TOC) were over 59%, 81%, 88% and 96%, respectively, with high growth rate (0.490d−1), high biomass productivity (269mgL−1d−1) and high lipid productivity (78mgL−1d−1). Further fatty acid methyl ester (FAME) analysis showed that the microalgal lipids were mainly composed of C16/C18 fatty acids (accounting for over 94% of total fatty acid), which are suitable for high-quality biodiesel production. The system could be scaled up from 100mL flasks to 25L BIOCOIL reactors, and semi-continuously operated at hydraulic retention time of 3days with a net biomass productivity of 1.51gL−1d−1 of dried algae.

Suggested Citation

  • Zhou, Wenguang & Li, Yecong & Min, Min & Hu, Bing & Zhang, Hong & Ma, Xiaochen & Li, Liang & Cheng, Yanling & Chen, Paul & Ruan, Roger, 2012. "Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production," Applied Energy, Elsevier, vol. 98(C), pages 433-440.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:433-440
    DOI: 10.1016/j.apenergy.2012.04.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912002917
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.04.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Xianzhen & Gu, Xiaoguang & Wang, Zhongyang & Shatner, William & Wang, Zhenjun, 2019. "Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 65-82.
    2. Sibi G, 2018. "Bioenergy Production from Wastes by Microalgae as Sustainable Approach for Waste Management and to Reduce Resources Depletion," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 13(3), pages 77-80, July.
    3. Rastogi, Rajesh P. & Pandey, Ashok & Larroche, Christian & Madamwar, Datta, 2018. "Algal Green Energy – R&D and technological perspectives for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2946-2969.
    4. Zhou, Wenguang & Wang, Jinghan & Chen, Paul & Ji, Chengcheng & Kang, Qiuyun & Lu, Bei & Li, Kun & Liu, Jin & Ruan, Roger, 2017. "Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1163-1175.
    5. Hu, Bing & Zhou, Wenguang & Min, Min & Du, Zhenyi & Chen, Paul & Ma, Xiaochen & Liu, Yuhuan & Lei, Hanwu & Shi, Jian & Ruan, Roger, 2013. "Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production," Applied Energy, Elsevier, vol. 107(C), pages 255-263.
    6. Goknur Sisman-Aydin & Kemal Simsek, 2022. "Municipal Wastewater Effects on the Performance of Nutrient Removal, and Lipid, Carbohydrate, and Protein Productivity of Blue-Green Algae Chroococcus turgidus," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    7. Ramos Tercero, Elia Armandina & Sforza, Eleonora & Bertucco, Alberto, 2013. "Energy profitability analysis for microalgal biocrude production," Energy, Elsevier, vol. 60(C), pages 373-379.
    8. Cheah, Wai Yan & Ling, Tau Chuan & Show, Pau Loke & Juan, Joon Ching & Chang, Jo-Shu & Lee, Duu-Jong, 2016. "Cultivation in wastewaters for energy: A microalgae platform," Applied Energy, Elsevier, vol. 179(C), pages 609-625.
    9. Zhang, Tian-Yuan & Hu, Hong-Ying & Wu, Yin-Hu & Zhuang, Lin-Lan & Xu, Xue-Qiao & Wang, Xiao-Xiong & Dao, Guo-Hua, 2016. "Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1602-1614.
    10. Zhou, Wenguang & Chen, Paul & Min, Min & Ma, Xiaochen & Wang, Jinghan & Griffith, Richard & Hussain, Fida & Peng, Pu & Xie, Qinglong & Li, Yun & Shi, Jian & Meng, Jianzong & Ruan, Roger, 2014. "Environment-enhancing algal biofuel production using wastewaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 256-269.
    11. Kabir, Faryal & Gulfraz, Muhammad & Raja, Ghazala Kaukab & Inam-ul-Haq, Muhammad & Awais, Muhammad & Mustafa, Muhammad Salman & Khan, Sami Ullah & Tlili, Iskander & Shadloo, Mostafa Safdari, 2020. "Screening of native hyper-lipid producing microalgae strains for biomass and lipid production," Renewable Energy, Elsevier, vol. 160(C), pages 1295-1307.
    12. Zhou, Junhui & Yu, Senshen & Kang, Helong & He, Rui & Ning, Yuxin & Yu, Yingyue & Wang, Meng & Chen, Biqiang, 2020. "Construction of multi-enzyme cascade biomimetic carbon sequestration system based on photocatalytic coenzyme NADH regeneration," Renewable Energy, Elsevier, vol. 156(C), pages 107-116.
    13. Tripathi, Ritu & Gupta, Asmita & Thakur, Indu Shekhar, 2019. "An integrated approach for phycoremediation of wastewater and sustainable biodiesel production by green microalgae, Scenedesmus sp. ISTGA1," Renewable Energy, Elsevier, vol. 135(C), pages 617-625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:433-440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.