IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i12p4563-4569.html
   My bibliography  Save this article

Current phase comparison pilot scheme for distributed generation networks protection

Author

Listed:
  • El Halabi, N.
  • García-Gracia, M.
  • Borroy, J.
  • Villa, J.L.

Abstract

The trends of the actual distribution networks are moving toward a high penetration of distributed generation and power electronics converters. These technologies modify contribution-to-fault current magnitudes and raise concern about new protection parameters settings to accurately detect faults on distribution networks. This paper proposes a differential phase jump pilot scheme to detect faulted branches in distribution networks. The aim of the proposed scheme is to provide an efficient algorithm with functions of fault detection and isolation, which are part of the self-healing functions used for smart grids. The proposed scheme is based on the current phase jump measured in each node with fault inception. Then, by comparing the phase jump obtained with the prefault conditions and rate changes, it determines the fault direction enabling a trip signal to the corresponding nodes to isolate the branch under fault. A distribution network has been modeled in PSCAD/EMTDC program to verify the proposed algorithm, taking into account distributed generation provided by both wind turbines (doubly fed induction generator and permanent magnet generator with full converter) and solar photovoltaic installations. The behavior of the current phase jump has been studied for both generation and load nodes. This algorithm is not affected by the magnitude of current and voltage and has been tested varying fault location and resistance along the modeled distribution network.

Suggested Citation

  • El Halabi, N. & García-Gracia, M. & Borroy, J. & Villa, J.L., 2011. "Current phase comparison pilot scheme for distributed generation networks protection," Applied Energy, Elsevier, vol. 88(12), pages 4563-4569.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4563-4569
    DOI: 10.1016/j.apenergy.2011.05.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911003540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.05.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García-Gracia, M. & El Halabi, N. & Khodr, H.M. & Sanz, Jose Fco, 2010. "Improvement of large scale solar installation model for ground current analysis," Applied Energy, Elsevier, vol. 87(11), pages 3467-3474, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yavuz Ates & Ali Rifat Boynuegri & Mehmet Uzunoglu & Abdullah Nadar & Recep Yumurtacı & Ozan Erdinc & Nikolaos G. Paterakis & João P. S. Catalão, 2016. "Adaptive Protection Scheme for a Distribution System Considering Grid-Connected and Islanded Modes of Operation," Energies, MDPI, vol. 9(5), pages 1-18, May.
    2. Jia, Ke & Gu, Chenjie & Li, Lun & Xuan, Zhengwen & Bi, Tianshu & Thomas, David, 2018. "Sparse voltage amplitude measurement based fault location in large-scale photovoltaic power plants," Applied Energy, Elsevier, vol. 211(C), pages 568-581.
    3. Samadi, Afshin & Shayesteh, Ebrahim & Eriksson, Robert & Rawn, Barry & Söder, Lennart, 2014. "Multi-objective coordinated droop-based voltage regulation in distribution grids with PV systems," Renewable Energy, Elsevier, vol. 71(C), pages 315-323.
    4. Ahmadigorji, Masoud & Amjady, Nima, 2015. "Optimal dynamic expansion planning of distribution systems considering non-renewable distributed generation using a new heuristic double-stage optimization solution approach," Applied Energy, Elsevier, vol. 156(C), pages 655-665.
    5. Haojie Mo & Yonggang Peng & Wei Wei & Wei Xi & Tiantian Cai, 2022. "SR-GNN Based Fault Classification and Location in Power Distribution Network," Energies, MDPI, vol. 16(1), pages 1-15, December.
    6. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arabkoohsar, A. & Machado, L. & Farzaneh-Gord, M. & Koury, R.N.N., 2015. "The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit," Energy, Elsevier, vol. 87(C), pages 520-539.
    2. El Halabi, N. & García-Gracia, M. & Comech, M.P. & Oyarbide, E., 2012. "Distributed generation network design considering ground capacitive couplings," Renewable Energy, Elsevier, vol. 45(C), pages 119-127.
    3. Trianni, Andrea & Cagno, Enrico & Accordini, Davide, 2019. "Energy efficiency measures in electric motors systems: A novel classification highlighting specific implications in their adoption," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4563-4569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.