IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i9p2839-2845.html
   My bibliography  Save this article

Modeling of rotating drum bioreactor for anaerobic solid-state fermentation

Author

Listed:
  • Wang, Er-Qiang
  • Li, Shi-Zhong
  • Tao, Ling
  • Geng, Xin
  • Li, Tian-Cheng

Abstract

Solid-state fermentation (SSF) has received more attention and has been applied to production of different products in recent years, especially biofuel production. The major problems to overcome in large-scale SSF are heat accumulation and heterogeneous distribution in a complex gas-liquid-solid multiphase bioreactor (or fermenter) system. In this work, a mathematical model of a rotating drum bioreactor for anaerobic SSF is developed considering the radial temperature distribution in the substrate bed. Validation experiments were conducted in a 5Â m3 pilot plant fermenter for production of fuel ethanol from milled sweet sorghum stalks. The model that was developed fit well with the experimental data. From these results, it was concluded that this mathematical model is a powerful tool to investigate the design and scale-up of an anaerobic SSF fermenter in the application of bioethanol production using cellulosic materials such as sweet sorghum stalks.

Suggested Citation

  • Wang, Er-Qiang & Li, Shi-Zhong & Tao, Ling & Geng, Xin & Li, Tian-Cheng, 2010. "Modeling of rotating drum bioreactor for anaerobic solid-state fermentation," Applied Energy, Elsevier, vol. 87(9), pages 2839-2845, September.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2839-2845
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00229-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Yu-Sheng & Lee, Wen-Chien & Duan, Kow-Jen & Lin, Yen-Han, 2013. "Ethanol production by simultaneous saccharification and fermentation in rotary drum reactor using thermotolerant Kluveromyces marxianus," Applied Energy, Elsevier, vol. 105(C), pages 389-394.
    2. Li, Shizhong & Li, Guangming & Zhang, Lei & Zhou, Zhixing & Han, Bing & Hou, Wenhui & Wang, Jingbing & Li, Tiancheng, 2013. "A demonstration study of ethanol production from sweet sorghum stems with advanced solid state fermentation technology," Applied Energy, Elsevier, vol. 102(C), pages 260-265.
    3. Ho, Cheng-Yu & Chang, Jui-Jen & Lee, Shih-Chi & Chin, Tsu-Yuan & Shih, Ming-Che & Li, Wen-Hsiung & Huang, Chieh-Chen, 2012. "Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast," Applied Energy, Elsevier, vol. 100(C), pages 27-32.
    4. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:9:p:2839-2845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.