IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i10p2244-2248.html
   My bibliography  Save this article

Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks

Author

Listed:
  • Kurt, Hüseyin
  • Kayfeci, Muhammet

Abstract

The objective of this study is to develop an artificial neural network (ANN) model to predict the thermal conductivity of ethylene glycol-water solutions based on experimentally measured variables. The thermal conductivity of solutions at different concentrations and various temperatures was measured using the cylindrical cell method that physical properties of the solution are being determined fills the annular space between two concentric cylinders. During the experiment, heat flows in the radial direction outwards through the test liquid filled in the annual gap to cooling water. In the steady state, conduction inside the cell was described by the Fourier equation in cylindrical coordinates, with boundary conditions corresponding to heat transfer between the solution and cooling water. The performance of ANN was evaluated by a regression analysis between the predicted and the experimental values. The ANN predictions yield R2 in the range of 0.9999 and MAPE in the range of 0.7984% for the test data set. The regression analysis indicated that the ANN model can successfully be used for the prediction of the thermal conductivity of ethylene glycol-water solutions with a high degree of accuracy.

Suggested Citation

  • Kurt, Hüseyin & Kayfeci, Muhammet, 2009. "Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks," Applied Energy, Elsevier, vol. 86(10), pages 2244-2248, October.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:10:p:2244-2248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00333-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Canakci, Mustafa & Erdil, Ahmet & Arcaklioglu, Erol, 2006. "Performance and exhaust emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 83(6), pages 594-605, June.
    2. Sözen, Adnan & Arcaklioglu, Erol & Özkaymak, Mehmet, 2005. "Turkey's net energy consumption," Applied Energy, Elsevier, vol. 81(2), pages 209-221, June.
    3. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    4. Gölcü, Mustafa & Sekmen, Yakup & ErduranlI, Perihan & Sahir Salman, M., 2005. "Artificial neural-network based modeling of variable valve-timing in a spark-ignition engine," Applied Energy, Elsevier, vol. 81(2), pages 187-197, June.
    5. Çelik, Veli & Arcaklioglu, Erol, 2005. "Performance maps of a diesel engine," Applied Energy, Elsevier, vol. 81(3), pages 247-259, July.
    6. Arcaklioglu, Erol & Çelikten, Ismet, 2005. "A diesel engine's performance and exhaust emissions," Applied Energy, Elsevier, vol. 80(1), pages 11-22, January.
    7. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    2. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    3. Mariani, F. & Grimaldi, C.N. & Battistoni, M., 2014. "Diesel engine NOx emissions control: An advanced method for the O2 evaluation in the intake flow," Applied Energy, Elsevier, vol. 113(C), pages 576-588.
    4. Paul, G. & Chopkar, M. & Manna, I. & Das, P.K., 2010. "Techniques for measuring the thermal conductivity of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1913-1924, September.
    5. Al-Rashed, Abdullah A.A.A., 2019. "Optimization of heat transfer and pressure drop of nano-antifreeze using statistical method of response surface methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 531-542.
    6. Bigdeli, Masoud Bozorg & Fasano, Matteo & Cardellini, Annalisa & Chiavazzo, Eliodoro & Asinari, Pietro, 2016. "A review on the heat and mass transfer phenomena in nanofluid coolants with special focus on automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1615-1633.
    7. Peng, Yeping & Khaled, Usama & Al-Rashed, Abdullah A.A.A. & Meer, Rashid & Goodarzi, Marjan & Sarafraz, M.M., 2020. "Potential application of Response Surface Methodology (RSM) for the prediction and optimization of thermal conductivity of aqueous CuO (II) nanofluid: A statistical approach and experimental validatio," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    8. Peng, Yeping & Parsian, Amir & Khodadadi, Hossein & Akbari, Mohammad & Ghani, Kamal & Goodarzi, Marjan & Bach, Quang-Vu, 2020. "Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3 – Cu nanoparticles dispersed in ethy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    9. Shi, Lei & Zhang, Shuai & Arshad, Adeel & Hu, Yanwei & He, Yurong & Yan, Yuying, 2021. "Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    2. Deh Kiani, M. Kiani & Ghobadian, B. & Tavakoli, T. & Nikbakht, A.M. & Najafi, G., 2010. "Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends," Energy, Elsevier, vol. 35(1), pages 65-69.
    3. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
    4. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    5. Shivakumar & Srinivasa Pai, P. & Shrinivasa Rao, B.R., 2011. "Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings," Applied Energy, Elsevier, vol. 88(7), pages 2344-2354, July.
    6. Ng, Hoon Kiat & Gan, Suyin & Ng, Jo-Han & Pang, Kar Mun, 2013. "Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism," Applied Energy, Elsevier, vol. 102(C), pages 1275-1287.
    7. Roy, Sumit & Ghosh, Ashmita & Das, Ajoy Kumar & Banerjee, Rahul, 2015. "Development and validation of a GEP model to predict the performance and exhaust emission parameters of a CRDI assisted single cylinder diesel engine coupled with EGR," Applied Energy, Elsevier, vol. 140(C), pages 52-64.
    8. Roy, Sumit & Banerjee, Rahul & Bose, Probir Kumar, 2014. "Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network," Applied Energy, Elsevier, vol. 119(C), pages 330-340.
    9. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    10. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Babu, D. & Thangarasu, Vinoth & Ramanathan, Anand, 2020. "Artificial neural network approach on forecasting diesel engine characteristics fuelled with waste frying oil biodiesel," Applied Energy, Elsevier, vol. 263(C).
    12. Attia, Shady & Evrard, Arnaud & Gratia, Elisabeth, 2012. "Development of benchmark models for the Egyptian residential buildings sector," Applied Energy, Elsevier, vol. 94(C), pages 270-284.
    13. Kara Togun, Necla & Baysec, Sedat, 2010. "Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks," Applied Energy, Elsevier, vol. 87(1), pages 349-355, January.
    14. Cinar, Didem & Kayakutlu, Gulgun & Daim, Tugrul, 2010. "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," Energy, Elsevier, vol. 35(4), pages 1724-1729.
    15. Sholahudin, S. & Han, Hwataik, 2016. "Simplified dynamic neural network model to predict heating load of a building using Taguchi method," Energy, Elsevier, vol. 115(P3), pages 1672-1678.
    16. Shi, Lei & Zhang, Shuai & Arshad, Adeel & Hu, Yanwei & He, Yurong & Yan, Yuying, 2021. "Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    18. Ng, Jo-Han & Ng, Hoon Kiat & Gan, Suyin, 2012. "Characterisation of engine-out responses from a light-duty diesel engine fuelled with palm methyl ester (PME)," Applied Energy, Elsevier, vol. 90(1), pages 58-67.
    19. Al-Hinti, I. & Samhouri, M. & Al-Ghandoor, A. & Sakhrieh, A., 2009. "The effect of boost pressure on the performance characteristics of a diesel engine: A neuro-fuzzy approach," Applied Energy, Elsevier, vol. 86(1), pages 113-121, January.
    20. Ganesan, P. & Rajakarunakaran, S. & Thirugnanasambandam, M. & Devaraj, D., 2015. "Artificial neural network model to predict the diesel electric generator performance and exhaust emissions," Energy, Elsevier, vol. 83(C), pages 115-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:10:p:2244-2248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.