IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v82y2005i2p181-195.html
   My bibliography  Save this article

Power optimization of an endoreversible closed intercooled regenerated Brayton-cycle coupled to variable-temperature heat-reservoirs

Author

Listed:
  • Wang, Wenhua
  • Chen, Lingen
  • Sun, Fengrui
  • Wu, Chih

Abstract

In this paper, in the viewpoint of finite-time thermodynamics and entropy-generation minimization are employed. The analytical formulae relating the power and pressure-ratio are derived assuming heat-resistance losses in the four heat-exchangers (hot- and cold-side heat exchangers, the intercooler and the regenerator), and the effect of the finite thermal-capacity rate of the heat reservoirs. The power optimization is performed by searching the optimum heat-conductance distributions among the four heat-exchangers for a fixed total heat-exchanger inventory, and by searching for the optimum intercooling pressure-ratio. When the optimization is performed with respect to the total pressure-ratio of the cycle, the maximum power is maximized twice and a [`]double-maximum' power is obtained. When the optimization is performed with respect to the thermal capacitance rate ratio between the working fluid and the heat reservoir, the double-maximum power is maximized again and a thrice-maximum power is obtained. The effects of the heat reservoir's inlet-temperature ratio and the total heat-exchanger inventory on the optimal performance of the cycle are analyzed by numerical examples.

Suggested Citation

  • Wang, Wenhua & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Power optimization of an endoreversible closed intercooled regenerated Brayton-cycle coupled to variable-temperature heat-reservoirs," Applied Energy, Elsevier, vol. 82(2), pages 181-195, October.
  • Handle: RePEc:eee:appene:v:82:y:2005:i:2:p:181-195
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(04)00169-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingen & Li, Ye & Sun, Fengrui & Wu, Chih, 2004. "Power optimization of open-cycle regenerator gas-turbine power-plants," Applied Energy, Elsevier, vol. 78(2), pages 199-218, June.
    2. Wu, Chih & Chen, Lingen & Sun, Fengrui, 1996. "Performance of a regenerative Brayton heat engine," Energy, Elsevier, vol. 21(2), pages 71-76.
    3. Chen, Lingen & Wang, Wenhua & Sun, Fengrui & Wu, Chih, 2004. "Closed intercooled regenerator Brayton-cycle with constant-temperature heat-reservoirs," Applied Energy, Elsevier, vol. 77(4), pages 429-446, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damiani, Lorenzo & Prato, Alessandro Pini & Revetria, Roberto, 2014. "Innovative steam generation system for the secondary loop of “ALFRED” lead-cooled fast reactor demonstrator," Applied Energy, Elsevier, vol. 121(C), pages 207-218.
    2. Goodarzi, Mohsen & Kiasat, Mohsen & Khalilidehkordi, Ehsan, 2014. "Performance analysis of a modified regenerative Brayton and inverse Brayton cycle," Energy, Elsevier, vol. 72(C), pages 35-43.
    3. Xia, Zhengrong & Zhang, Yue & Chen, Jincan & Lin, Guoxing, 2008. "Performance analysis and parametric optimal criteria of an irreversible magnetic Brayton-refrigerator," Applied Energy, Elsevier, vol. 85(2-3), pages 159-170, February.
    4. Ust, Yasin & Sahin, Bahri & Kodal, Ali & Akcay, Ismail Hakki, 2006. "Ecological coefficient of performance analysis and optimization of an irreversible regenerative-Brayton heat engine," Applied Energy, Elsevier, vol. 83(6), pages 558-572, June.
    5. Choudhary, Tushar & Sanjay,, 2017. "Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization," Energy, Elsevier, vol. 134(C), pages 1013-1028.
    6. Sanjay, & Prasad, Bishwa N., 2013. "Energy and exergy analysis of intercooled combustion-turbine based combined cycle power plant," Energy, Elsevier, vol. 59(C), pages 277-284.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    2. Kaushik, S.C & Kumar, S, 2000. "Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses," Energy, Elsevier, vol. 25(10), pages 989-1003.
    3. Li, Yuqiang & Liu, Gang & Liu, Xianping & Liao, Shengming, 2016. "Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance," Renewable Energy, Elsevier, vol. 95(C), pages 465-473.
    4. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2011. "Operating conditions of an open and direct solar thermal Brayton cycle with optimised cavity receiver and recuperator," Energy, Elsevier, vol. 36(10), pages 6027-6036.
    5. Liu, Xiong & Chen, Lingen & Feng, Huijun & Qin, Xiaoyong & Sun, Fengrui, 2016. "Constructal design of a blast furnace iron-making process based on multi-objective optimization," Energy, Elsevier, vol. 109(C), pages 137-151.
    6. Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
    7. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    8. Le Roux, W.G. & Bello-Ochende, T. & Meyer, J.P., 2013. "A review on the thermodynamic optimisation and modelling of the solar thermal Brayton cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 677-690.
    9. Chen, Lingen & Ding, Zemin & Sun, Fengrui, 2011. "Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics," Energy, Elsevier, vol. 36(7), pages 4011-4018.
    10. Hao, Xiaoli & Zhang, Guoqiang, 2007. "Maximum useful energy-rate analysis of an endoreversible Joule-Brayton cogeneration cycle," Applied Energy, Elsevier, vol. 84(11), pages 1092-1101, November.
    11. Erbay, L. Berrin & Yavuz, Hasbi, 1999. "Analysis of an irreversible Ericsson engine with a realistic regenerator," Applied Energy, Elsevier, vol. 62(3), pages 155-167, March.
    12. Choudhary, Tushar & Sanjay,, 2017. "Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization," Energy, Elsevier, vol. 134(C), pages 1013-1028.
    13. Khu, Kerwin & Jiang, Liudi & Markvart, Tom, 2011. "Effect of finite heat input on the power performance of micro heat engines," Energy, Elsevier, vol. 36(5), pages 2686-2692.
    14. Chen, Lingen & Li, Ye & Sun, Fengrui & Wu, Chih, 2004. "Power optimization of open-cycle regenerator gas-turbine power-plants," Applied Energy, Elsevier, vol. 78(2), pages 199-218, June.
    15. Erbay, L. Berrin & Göktun, Selahattin & Yavuz, Hasbi, 2001. "Optimal design of the regenerative gas turbine engine with isothermal heat addition," Applied Energy, Elsevier, vol. 68(3), pages 249-264, March.
    16. Goodarzi, Mohsen & Kiasat, Mohsen & Khalilidehkordi, Ehsan, 2014. "Performance analysis of a modified regenerative Brayton and inverse Brayton cycle," Energy, Elsevier, vol. 72(C), pages 35-43.
    17. Mossi Idrissa, A.K. & Goni Boulama, K., 2017. "Investigation of the performance of a combined Brayton/Brayton cycle with humidification," Energy, Elsevier, vol. 141(C), pages 492-505.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:82:y:2005:i:2:p:181-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.